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Abstract

The infinite pigeonhole theorem asserts that if f : N → m is a
function with a finite range, then there is a j < m such that the set
{n ∈ N | f(n) = j} is infinite. This article uses the techniques of
reverse mathematics and Weihrauch analysis to examine the strength
of a theorem that finds all the values that occur infinitely often in the
range of a function.

For a function f : N → m with a finite range, the color basis for f is
the set B ⊆ [0,m) such that c ∈ B if and only if c appears infinitely often
in the range. More formally, B = {c < m | ∀b∃n(n > b ∧ f(n) = c)}.
The next section examines the strength of the existence of color bases in
reverse mathematics. The following three sections extend the examination
via Weihrauch analysis and higher order reverse mathematics. Preliminary
versions of these results were presented at RaTLoCC 2024 [11] under the title
of pigeonhole basis theorems. The terminology has been changed because the
pigeonhole terminology was used previously for computational basis results
by Monin and Patey [9].

1 Reverse mathematics: Induction and comprehension

The study of reverse mathematics is founded on a hierarchy of subsystems
of second order arithmetic, described in detail in the texts of Dzhafarov and
Mummert [3] and Simpson [12]. The base system RCA0 includes induction
restricted to Σ0

1 formulas and a set existence axiom for computable sets (for-
malized by ∆0

1 definability). As a consequence of the restriction on induction,
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RCA0 cannot prove the Π0
1 bounding scheme, defined by

BΠ0
1 : (∀x < a)(∃y)(∀z)θ(x, y, z) → (∃b)(∀x < a)(∃y < b)(∀z)θ(x, y, z)

where θ is a Σ0
0 formula. Indeed, over RCA0 there is a strict hierarchy of

bounding and induction schemes, with IΣ0
n weaker than BΠ0

n weaker than
IΣ0

n+1 for all n. (See Chapter 6 of Dzhafarov and Mummert [3] for details.)
The following theorem relates BΠ0

1 to the infinite pigeonhole priniciple (often
called RT1 or Ramsey’s theorem for singletons).

Theorem 1. (RCA0) The following are equivalent:

(1) BΠ0
1.

(2) RT1: If f : N → m then for some j < m, the set {n | f(n) = j} is
infinite.

The proof of Theorem 1 appeared initially in Hirst’s thesis [5], but is more
readily accessible in the texts of Dzhafarov and Mummert [3] (Theorem 6.5.1)
and Weber [13] (Theorem 9.5.1). While RT1 ensures that the color basis for
a function is not empty, over RCA0 the existence of the color basis is strictly
stronger, as shown by the following theorem.

Theorem 2. (RCA0) The following are equivalent:

(1) CB: Every f : N → m has a color basis.

(2) IΣ0
2: Induction restricted to Σ0

2 formulas.

Proof. Working in RCA0, by Exercise II.3.13 of Simpson [12], the induction
scheme IΣ0

2 is equivalent to bounded Π0
2 comprehension. Recall that the color

basis of f is defined by B = {c < m | ∀b∃n(n > b ∧ f(n) = c}, which is a
bounded Π0

2 set. Thus item (1) follows from item (2).
To show the converse, suppose m ∈ N and θ(c, b, n) is a Σ0

0 formula. Our
goal is to use CB to prove that the set {c < m | ∀b∃nθ(c, b, n)} exists. Using
a bijection identifying triples (c, b, n) in m×N×N with integer codes, define
f : N → m+ 1 by

f(c, b, n) =

{
c if n is the least t ≤ n such that (∀j ≤ b)(∃k ≤ t)θ(c, j, k)

m otherwise.
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Recursive comprehension proves the existence of f . Note that for a fixed
c0, if ∀b∃nθ(c0, b, n), then RCA0 proves that for each b there is a unique
least t such that (∀j ≤ b)(∃k ≤ t)θ(c0, j, k). In this situation, c0 appears
in the range of f once for each value of b, and so c0 is in the color basis
for f . On the other hand, for any fixed c1 satisfying ¬∀b∃nθ(c1, b, n), if b1
witnesses ∀n¬θ(c1, b1, n), then c1 appears in the range of f no more than
b1 times. In this situation, c1 is not in the color basis for f . Summarizing,
the values less than m that are in the color basis for f are exactly the set
{c < m | ∀b∃nθ(c, b, n)} as desired.

At RaTLoCC 2024 [11], Professor Schnoebelen (LSV, CNRS, ENS Paris-
Saclay) asked if requiring the color bases of item (1) of Theorem 2 to be
nonempty would affect the reverse mathematical strength. Interestingly, the
strength of item (1) is unchanged by this revision. The scheme IΣ0

2 implies
BΠ0

1, so item (2) implies item (1). The converse follows immediately from
the given proof.

In light of known results on reverse mathematics of matroids, the con-
nection of the color basis theorem and IΣ0

2 is not so surprising. Matroids
capture the fundamental notions of basis and dimension in a combinatorial
setting. Theorem 5 of Hirst and Mummert’s [6] shows the equivalence of a
matroid basis theorem and IΣ0

2. Informally, a matroid resembles the vectors
in a vector space, and an e-matroid as defined below is an enumeration of
dependent sets.

Definition. An e-matroid is a pair (M, e) consisting of a non-empty set M
and a function e : N → [M ]<N enumerating the finite dependent subsets of
M . The enumeration e satisfies the following conditions:

(1) The empty set is independent. Formally, ∀n(e(n) ̸= ∅).

(2) Finite supersets of dependent sets are dependent. Formally,

(∀n)(∀Y ∈ M<N)(e(n) ⊆ Y → ∃m(e(m) = Y )).

(3) (Exchange principle) If X and Y are independent with |X| < |Y |, then
Y contains an element that is independent of X. That is, if X and Y
are independent and |X| < |Y |, then (∃y ∈ Y )(∀n)(e(n) ̸= X ∪ {y}).
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The set M is often used as a shorthand for the matroid (M, e). A finite set
B spans M if every proper extension is dependent. Formally, B spans M
means

(∀x ∈ M)(x /∈ B → (∃n)(e(n) = B ∪ {x})).
A finite subset B is a basis for M if B spans M and B is independent.

The e-matroid terminology can be used to add another equivalence to
Theorem 2.

Theorem 3. (RCA0) The following are equivalent:

(1) EMB: If the there is a bound b for the dimension of an e-matroid (M, e),
that is, if every set of size greater than b is dependent, then M has a
finite basis.

(2) CB: Every f : N → m has a color basis.

(3) IΣ0
2: Induction restricted to Σ0

2 formulas.

Proof. The shortest proof is to note that Theorem 2 shows the equivalence of
CB and IΣ0

2, and Theorem 5 of Hirst and Mummert [6] shows the equivalence
of EMB and IΣ0

2.

Of course, direct proofs of the equivalence of the first two items of The-
orem 3 are possible. In particular, see the comment following the proof of
Theorem 5 below.

The subsystem ACA0 includes a set comprehension axioms that asserts the
existence of arithmetically definable sets. Many results in reverse mathemat-
ics prove equivalences between familiar mathematical theorems and ACA0.
Finding color bases for sequences of functions yields such a result.

Theorem 4. (RCA0) The following are equivalent:

(1) ACA0.

(2) If ⟨fi⟩i∈N is a sequence of functions with finite ranges, then there is a
function g : N → N such that for every n, g(n) is (the code for) the
color basis for fn.

(3) If ⟨fi⟩i∈N is a sequence of functions from N to {0, 1}, then there is a
function g : N → N such that for every n, g(n) is (the code for) the
color basis for fn.

4



Proof. We work in RCA0 throughout. To prove that item (1) implies item (2),
assume ACA0 and let ⟨fi⟩i∈N satisfy the hypotheses of item (2). Then for each
i, there is a unique (code for a) finite set Bi which is a color basis for fi. The
set Bi satisfies the arithmetical formula

j ∈ Bi ↔ ∀m∃n(m < n ∧ fi(n) = j).

Thus arithmetical comprehension suffices to prove the existence of the func-
tion g which maps each i to (the code for) Bi.

Item (3) is a special case of item (2), so the proof can be completed with a
proof of item (1) from item (3). By Lemma III.1.3 of Simpson [12], it suffices
to use item (3) to find the range of an injection h : N → N. For each i, define
fi by:

fi(n) =


0 if (∀t ≤ n)(h(t) ̸= i)

0 if (∃t ≤ n)(h(t) = i) ∧ (∃m ≤ n)(2m = n)

1 if (∃t ≤ n)(h(t) = i) ∧ (∀m ≤ n)(2m ̸= n)

The existence of the sequence ⟨fi⟩i∈N is provable in RCA0. Intuitively, if i
has not appeared in the range of h by n, then fi(n) = 0. If i has appeared
in the range of h, then fi(n) is the parity of n. Thus the color basis for fi
is {0} if i is not in the range of h and the basis is {0, 1} if i is in the range.
Apply item (3) to find a function g such that g(i) is the color basis for fi for
all i. Then the range of h is {i ∈ N | g(i) = {0}}, and exists by recursive
comprehension.

2 Weihrauch Analysis

This section uses Weihrauch analysis to examine the color basis theorem.
Introductions to the Weihrauch analysis can be found in the texts of Dzhfarov
and Mummert [3] and Weihrauch [14], and the works of Brattka and Gherardi
[1]. The article by Dorais et al [2] includes Weihrauch analysis of many
problems related to RT1.

We denote the Weihrauch problem related to the color basis priniciple by
CB. An instance of the problem CB is a pair (f,m) where m is a natural
number and f : N → m. The solution for the problem is (the integer code
for) the color basis for f . Similarly, an instance of the Weihrauch problem
EMB<ω is a triple (M, e, b) where (M, e) is an e-matroid in which every set
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of size b+ 1 is dependent, and the solution is (an integer code for) a basis of
(M, e). The Weihrauch problem EMB<ω was studied by Hirst and Mummert
[6].

A realizer for a Weihrauch problem is a function that inputs instances
of the problem and outputs solutions. Because instances can have many
solutions, realizers are not unique. If P and Q are Weihrauch problems, we
say P is (weakly) Weihrauch reducible to Q and write P ≤W Q if there is
a computable preprocessing procedure Φ and a computable postprocessing
procedure Ψ such that for any realizer RQ for problem Q, the composition
Ψ(RQ(Φ(f)), f) is a realizer for P . Informally, Φ converts any instance f of
the problem P into an instance of Q, and Ψ converts any solution of Φ(f)
into a solution for f , referring to f in the conversion, if necessary. Using
this terminology, the next theorem relates the Weihrauch problems CB and
EMB<ω.

Theorem 5. CB ≤W EMB<ω.

Proof. The preprocessing procedure for an instance (f,m) of CB consists of
two steps. First, define f ′ : N → m by f ′(j) = j for j < m and f ′(j) = f(j)
for j ≥ m. Note that the range of f ′ includes all of [0,m) and the color
basis of f ′ matches that of f . Second, compute an instance of EMB<ω for f ′.
Let h : N → N<N computably enumerate the finite subsets of N, repeating
each subset infinitely often. Define the matroid (e,N) as follows. For each
n, suppose h(n) = {x0, . . . , xk}. If f ′ assigns the same value to two elements
of h(n), or if for some xj ∈ h(n) there is a t ≤ n such that t > xj and
f(t) = f(xj), then set e(n) = h(n), otherwise, set e(n) = {m}. The desired
instance of EMB<ω is (N, e,m).

Now we will describe the postprocessing procedure. If S is any indepen-
dent set for the matroid (e,N) and s ∈ S, then s is the largest number for
which f ′ takes the value f ′(s). Let B be a basis for (e,N). The set {f ′(x) |
x ∈ B} is exactly those values in the range of f ′ which appear finitely often in
the range of f ′. Because f ′ is onto [0,m), B′ = {j < m | (∀x ∈ B)f ′(x) ̸= j}
is the color basis for f ′ and thus for f .

The proof of Theorem 5 can easily be formalized in RCA0, providing a
direct proof of one direction of Theorem 3. Our original reverse mathematics
proof (not presented here) applied the preprocessing procedure to the func-
tion f , using bounded comprehension in the postprocessing stage to delete
the values not in the range of f from the complement of the image of the
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matroid basis. The application of bounded comprehension barred a conver-
sion of that proof to a Weihrauch reduction, so the use of f ′ was added to
the preceding proof to address this issue. Our direct proof of the converse
in Theorem 5 (not presented here) is more convoluted. The next theorem
implies that no Weihrauch reduction can be extracted from that proof.

Following the notation of Hirst and Mummert [6], let EMB1 denote the
problem of finding a basis for an e-matroid of dimension exactly 1. An input
for EMB1 has the form (M, e, 1) because every set of of size 2 is dependent.

Theorem 6. EMB1 ̸≤W CB.

Proof. Suppose by way of contradiction that EMB1 ≤W CB. Let Φ and Ψ
be the witnessing computable preprocessing and postprocessing procedures.
For each e-matroid (N, e) of dimension 1, Φ(N, e, 1) yields a CB problem of
the form (f,m) where f : N → m. Consider the e-matroid with e0 : N → N
defined by e0(n) = {n + 1}. Suppose Φ(N, e0, 1) = (f,m0). The procedure
Φ is computable, so the value of m0 is determined by some finite stage using
a finite initial segment of e0. Call the length of this segment u0. For every
e-matroid (N, e) of dimension 1 that agrees with e0 up to u0, Φ(N, e, 1) will
be a pair (f,m0) where f : N → m0. The color basis for any such f is one of
the finitely many subsets of [0,m0).

We claim that there is an e-matroid (N, e) of dimension 1 such that for
every j there is an e-matroid (N, e1) of dimension 1 with e(n) = e1(n) for all
n ≤ j, the basis of (e1,N) is {k} for some k > j, and Φ(N, e, 1) and Φ(N, e1, 1)
have the same color basis. To see this, suppose it is not the case and consider
(N, e0) from the preceding paragraph. Then there is a j0 such that for every
(N, e1) of dimension 1, if e0(n) = e1(n) for all n ≤ j0 and the basis of (N, e1) is
{k} for some k > j0 then Φ(N, e0, 1) and Φ(N, e1, 1) have different color bases.
For example, consider the matroid (N, e1) where e1 : N → N is defined by
e1(n) = e0(n) for n ≤ j0, e1(j0+1) = {0}, and e1(n) = {n+1} for n ≥ j0+1.
The basis of (N, e1) is {j0+1}, so Φ(N, e0, 1) and Φ(N, e1, 1) must have distinct
color bases. Indeed, for any e-matroid (N, e) of dimension 1 matching e1 up
to j0+1, Φ(N, e, 1) and Φ(N, e0, 1) will have distinct color bases. Iterating the
construction, we can find e0, e1, . . . , e2m defining e-matroids so that the color
bases for Φ(N, e0, 1), . . . ,Φ(N, e2m , 1) are 2m + 1 distinct subsets of [0,m),
yielding a contradiction.

Now suppose (N, e) is an e-matroid satisfying the claim of the first sen-
tence of the preceding paragraph. Let {b} be the basis of (N, e), and suppose
the color basis of Φ(N, e, 1) is S. We know that Ψ(S, (N, e)) = {b}. This
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computation uses only a finite initial segment of e, call the length of this
segment u. Applying the claim, Let j = max{u, b} and choose e1 such that
e(n) = e1(n) for all n ≤ j, the basis of (N, e1) is {k} where k > j, and the
color basis of Φ(N, e1, 1) is S. By the choice of j, Ψ(S, (N, e1)) = Ψ(S, (N, e)).
But if Ψ is correct, Ψ(S, (N, e)) = {b} and Ψ(S, (N, e1)) = {k}, where
k > j ≥ b. Thus no computable preprocessing and postprocessing proce-
dures can exist.

The choice principle CN is a widely studied problem in the Weihrauch
literature. Given a function f : N → N that is not onto, a solution of CN
is an integer not appearing in the range of f . This is the same as finding a
basis for a matroid of dimension 1, so CN ≡W EMB1. Thus Theorem 6 shows
that CN ̸≤W CB. We also note that the following inequality can be derived
from the previous two results.

Corollary 7. CB <W EMB<ω.

Proof. By Theorem 5, CB ≤W EMB<ω. Because EMB1 is a restriction of
EMB<ω to matroids of dimension 1, we have EMB1 ≤W EMB<ω. If it were
the case that EMB<ω ≤W CB, we would have EMB1 ≤W CB, contradicting
Theorem 6. Thus CB <W EMB<ω.

We have shown that the reverse mathematical equivalent of Theorem 3
is not replicated in the Weihrauch setting. We conclude the section with two
results that show that CB is Weihrauch stronger than the limited principle
of omniscience. The Weihrauch problem LPO accepts inputs of the form
f : N → 2, outputs 1 if the range of f contains no zeros, and outputs 0 if 0
is in the range of f .

Theorem 8. LPO ≤W CB.

Proof. Given an instance of LPO of the form f : N → 2, define Φ(f) by:

Φ(f)(n) =


1 if (∀t ≤ n)(f(t) = 1)

1 if (∃t ≤ n)(f(t) = 0) and n is odd

0 if (∃t ≤ n)(f(t) = 0) and n is even

For any f : N → 2, the color basis of Φ(f) is {1} if f is never 0, and {0, 1}
if 0 is in the range of f . For S a set of size at most 2, define Ψ(S) = 2− |S|.
If S is the color basis of Φ(f), Ψ(S) calculates the LPO output for f .
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Theorem 9. CB ̸≤W LPO.

Proof. Suppose by way of contradiction that Φ and Ψ are procedures that
witness CB ≤W LPO. Suppose first that for every color basis instance f :
N → 2, Φ(f) is the LPO instance that is constantly 1. Suppose that f is the
constant 0 function. Because 1 is the LPO solution of Φ(f), we must have
Ψ(f, 1) = {0}, the color basis of f . The computation of Ψ uses only a finite
initial segment of f , say of length u. Define g(t) = 0 if t ≤ u and g(t) = 1
otherwise. Then Ψ(g, 1) = Ψ(f, 1) = {0} although {1} is the color basis for
g. Thus, there must be some color basis instance whose corresponding LPO
instance is not constantly 1.

Now suppose that there is a color basis instance f such that Φ(f) is an
LPO instance with a 0 in its range. The first zero of Φ(f) is calculated
using only a finite initial segment of f , say of length u0. Suppose Ψ(f, 0)
calculates the basis of f using only an initial segment of f of length u1. Let
u = max{u0, u1}. Let g be a function that matches f up to u, but has a
different color basis from f . Then Φ(g) must contain a 0, and Ψ(g, 0) matches
the color basis of f , yielding an incorrect value for g.

The proofs of Theorem 8 and 9 actually only use the restriction of the
color basis problem to functions from N into 2. If we write CB2 for the
restricted problem, we have shown that LPO <W CB2.

3 Higher order reverse mathematics

Reverse mathematics can be extended from numbers and sets of numbers to
higher types, such as functions from sets to numbers or from sets to sets. A
base theory RCAω

0 and early results are presented in Kohlenbach’s article [8].
This framework has been used in many articles by Normann and Sanders
and by Hirst and Mummert (e.g. [10] and [7]). With the more expressive
language, principles can be formulated asserting the existence of realizers for
Weihrauch problems. For example, in the next theorem, the principle (LPO)
asserts the existence of a realizer for the Weihrauch problem LPO. Over
RCAω

0 , (LPO) is identical to Kohlenbach’s principle (∃2), which is related to
Kleene’s functional E2.

Theorem 10. (RCAω
0 ) The following are equivalent:
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(1) (LPO) there is a functional LPO such that for all f : N → 2, LPO(f) =
0 if and only if ∃t(f(t) = 0). This principle is sometimes denoted
ACAω

0 .

(2) (CB2) There is a function CB2 such that for for all f : N → 2, CB2(f)
is the color basis of f .

Proof. To prove that item (2) implies item (1), note that RCAω
0 proves that

there is a function PRE such that for all f : N → 2, PRE(f) is a function
that is constantly 1 until a zero appears in the range of f and constantly 0
afterwards. The function LPO(f) is the element appearing in CB2(PRE(f)).

The underlying idea of the proof that item (1) implies (2) is that given
the LPO function, RCAω

0 can iterate it. Suppose (LPO) holds. Let f : N → 2
be an input for CB2. Define the function Z(f, n)(k) by setting Z(f, n)(k) = 1
unless k is the nth number where f equals 0, in which case Z(f, n)(k) = 0.
Note that f has at least n zeros if and only if LPO(Z(f, n)) = 0. If f
has finitely many zeros, then for all values n larger than some bound m,
LPO(Z(f, n)) = 1. The function g(f, n) = 1 − LPO(Z(f, n)) has zeros in
its range if and only if f has only finitely many zeros. Thus the function
Z ′(f) = LPO(g(f, n)) takes the value 0 if f has finitely many zeros in its
range and 1 if f has infinitely many zeros. Define a similar function U ′(f)
that counts ones, so that U ′(f) = 0 if f has finitely many ones in its range
and 1 if f has infinitely many zeros. The function B(f) defined by

B(f) =


{0} if U ′(f) = 0 ∧ Z ′(f) = 1

{1} if U ′(f) = 1 ∧ Z ′(f) = 0

{0, 1} if U ′(f) = 1 ∧ Z ′(f) = 1

finds the color basis for f .

While the comment following Theorem 9 indicates that the Weihrauch
problems CB2 and LPO are not Weihrauch equivalent, Theorem 10 shows that
the related higher order principles (CB2) and (LPO) are provably equivalent
over RCAω

0 . In this case, the fact that the higher order functionals can be
applied sequentially makes them behave like the parallelized versions of the
Weihrauch problems, which can be shown to be Weihrauch equivalent.

10



4 Additional equivalences

In this section, we examine two more problems that are Weihrauch equiv-
alent to EMB<ω. Both correspond to statements that are equivalent to IΣ0

2

in the reverse mathematics setting. Thus they are equivalent to the color
basis problem in the reverse mathematics setting and strictly stronger in the
Weihrauch setting.

The first problem is graph theoretic. Here graphs are represented by a set
of vertices and a set of undirected edges, where each edge is a pair of vertices.
The vertices v0 and vn lie in the same connected component if there is a path
v0, v1, . . . vn such that for each i, (vi, vi+1) is an edge of G. An instance of
the Weihrauch problem GAC<ω is a triple (V,E, n) consisting of a graph with
vertices V and edges E with at most n distinct connected components. A
solution of the problem is a set of vertices consisting of exactly one vertex
from each connected component. The notation GAC<ω stands for Graph
AntiChain, where vertices are comparable if they lie in the same connected
component. This terminology matches that of Hirst and Mummert [6].

The second problem concerns finite partitions of sets. A sequence of
functions ⟨ei | i ∈ I⟩ is an enumerated partition of a set S if (1) for every
s ∈ S there are values i and m such that ei(m) = s, and (2) if ei(m) = ej(n)
for some i, j, m, and n, then ∀m∃n(ei(m) = ej(n)). Informally, the functions
ei enumerate the disjoint cells in a partition of S. Cells may be enumerated
by more than one function, in varying orders. Every element of S is contained
in some cell.

An instance of the partition problem P<ω is a triple (S, ⟨ei | i ∈ I⟩, n)
where the set S is partitioned by ⟨ei | i ∈ I⟩ and the partition has at most
n cells. The solution is a set of indices that include exactly one enumeration
for each cell of the partition. The problem P<ω can be thought of as choosing
one vertex from each edge of a hypergraph with finitely many disjoint edges,
where each edge is enumerated rather than being presented as a set.

Results about graphs with infinitely many connected components and
partitions with infinitely many cells can be found in the article of Gura, Hirst,
and Mummert [4]. The following theorem adds information the partition
problem to the list of Weihrauch equivalences in Theorem 17 of Hirst and
Mummert [6]. The notation P ≡W Q abbreviates the conjunction of P ≤W Q
and Q ≤W P .

Theorem 11. GAC<ω ≡W P<ω ≡W EMB<ω.
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Proof. To see that GAC<ω ≤W P<ω, suppose (V,E, n) is an input for GAC<ω.
Compute an associated partition problem by defining ev : N → V by ev(t) =
v′ if t codes a path from v to v′ and ev(t) = v otherwise. Letting Φ denote
this preprocessing computation, Φ(V,E, n) is the partition problem (V, ⟨ev |
v ∈ V ⟩, n). Any solution of this partition problem will consists of exactly
one vertex from each connected component of the original graph, so the
postprocessing computation is trivial.

To see that P<ω ≤W EMB<ω, suppose (S, ⟨ei | i ∈ I⟩, n) is a parti-
tion problem. Let s0 denote an element not appearing in S. Let Fn be an
enumeration of the finite subsets of S ∪ {s0}, where each subset appears
infinitely often. Let (M, e) be the matroid on S ∪ {s0} defined by setting
e(m) = Fm if either (1) s0 ∈ Fm, or (2) there are values t0 < t1 and i all less
than m such that ei(t0) ∈ Fm, ei(t1) ∈ Fm, and ei(t0) ̸= ei(t1). Otherwise,
let e(m) = {s0}. The independent sets of (M, e) consist of finite lists of
elements of S lying in distinct partition cells. Any solution of the matroid
problem (M, e, n) must span (M, e) and so will consist of exactly one element
from each cell in the partition. For this reduction also, the postprocessing
computation is trivial. Theorem 17 of Hirst and Mummert [6] includes the
reduction EMB<ω ≤W GAC<ω. By transistivity of Weihrauch reducibility, all
three problems are Weihrauch equivalent. The reductions here and in the
Hirst and Mummert result do not use the initial input in the postprocessing,
so the result holds for strong Weihrauch reducibility.

The proof of the preceding result is easily modified to yield a reverse
mathematical equivalence.

Theorem 12. (RCA0) The following are equivalent:

(1) If the enumerations ⟨ei | i ∈ I⟩ partition S into at most n cells, then
there is a finite set consisting of exactly one element from each cell.

(2) IΣ0
2.

Proof. The construction used in the first Weihrauch reduction in Theorem 11
can be adapted to show that item (1) implies that every graph with finitely
many components can be decomposed into its connected components. The
second construction can be adapted to show that the fact that every finite
dimensional matroid has a basis implies item (1). The equivalence of the
graph and matroid statements with IΣ0

2 appears as Theorem 5 of Hirst and
Mummert [6].
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Among the combinatorial statements equivalent to IΣ0
2 that are used in

this paper, all the Weihrauch versions are equivalent, with the exception of
the strictly weaker color basis problem. It would be interesting to know
if there are other IΣ0

2 equivalent problems that are weak in the Weihrauch
setting.
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