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Abstract We formulate a polarized version of Ramsey’s theorem for trees. For ex-
ponents greater than 2, the reverse mathematics and computability theory associated
with this theorem parallels that of its linear analog. For pairs, the situation is more
complex. In particular, there are many reasonable notions of stability in the tree set-
ting, complicating the analysis of the related results.
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1 Introduction

This paper continues the study of Ramsey’s theorem for trees, from a computability
theoretic and reverse mathematics point of view. For general background and notation
in computability theory and reverse mathematics, see Soare [10] and Simpson [11],
respectively.

Definition 1.1 Let X ⊆ N be infinite and n,k ≥ 1.

1. We denote by [X ]n the set of all n-element subsets of X .
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2. A function f : [X ]n→ k, where k = {0,1, . . . ,k−1}, is a k-coloring of [X ]n.
3. A set H ⊆N is homogeneous for a k-coloring f of [N]n if H is infinite and f � [H]n

is constant.

The following statement of the linear version of Ramsey’s theorem can be made
in RCA0.

Ramsey’s Theorem Let n,k ≥ 1.

RTn
k : Every k-coloring f : [N]n→ k has a homogeneous set.

RTn: For all k ≥ 1, RTn
k .

RT : For all n≥ 1, RTn.

Chubb, Hirst, and McNicholl [4] considered a version of Ramsey’s theorem for
trees. Let 2<N denote the full binary tree of height ω; a subtree is any subset of 2<N.

Definition 1.2 ([4]) Let n,k ≥ 1.

1. We denote by [2<N]n the collection of linearly ordered subsets of 2<N of size n.
2. A subtree S ⊆ 2<N is (order) isomorphic to 2<N, written S ∼= 2<N, if there is a

bijection g : 2<N → S such that for all σ ,τ ∈ 2<N, σ ⊆ τ if and only if g(σ) ⊆
g(τ).

3. A subtree S⊆ 2<N is monochromatic for a k-coloring f : [2<N]n→ k if f � [S]n is
constant. A homogeneous set for f is a monochromatic subtree S∼= 2<N.

Given f : [2<N]n → k and {σ0, . . . ,σn−1} ∈ [2<N]n, we shall write f (σ0, . . . ,σn−1)
instead of f ({σ0, . . . ,σn−1}) when σ0 ⊆ ·· · ⊆ σn−1.

The following statement of the tree version of Ramsey’s theorem can be made in
RCA0.

Tree Theorem Let n,k ≥ 1.

TTn
k : Every k-coloring f : [2<N]n→ k has a homogeneous set.

TTn: For all k ≥ 1, TTn
k .

TT : For all n≥ 1, TTn.

Dzhafarov and Hirst [6] considered a polarized version of Ramsey’s theorem.

Definition 1.3 ([6], Definition 1.3) Let n,k ≥ 1.

1. A p-homogeneous set for a k-coloring f : [N]n→ k is a sequence 〈H0, . . . ,Hn−1〉 of
infinite sets such that for some c< k, f ({x0, . . . ,xn−1}) = c for all 〈x0, . . . ,xn−1〉 ∈
H0×·· ·×Hn−1 with xi 6= x j whenever i 6= j.

2. An increasing p-homogeneous set for f is a sequence 〈H0, . . . ,Hn−1〉 of infinite
sets such that for some c < k and for all 〈x0, . . . ,xn−1〉 ∈ H0× ·· · ×Hn−1 with
x0 < · · ·< xn−1, f ({x0, . . . ,xn−1}) = c.

The following statements of polarized versions of (the linear) Ramsey’s theorem can
be made in RCA0.

(Increasing) Polarized Theorem Let n,k ≥ 1.
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PTn
k : Every k-coloring f : [N]n→ k has a p-homogeneous set.

PTn: For every k ≥ 1, PTn
k .

PT : For every n≥ 1, PTn.
IPTn

k : Every k-coloring f : [N]n→ k has an increasing p-homogeneous set.
IPTn: For every k ≥ 1, IPTn

k .
IPT : For every n≥ 1, IPTn.

The question of whether the polarized form of Ramsey’s theorem is weaker than
the linear form was asked originally by Schmerl (personal communication), who was
working on an application of the polarized theorem. Dzhafarov and Hirst [6] proved
that, for fixed exponent, the two theorems are equivalent over RCA0. Since we are
interested in the ways that tree results differ from or resemble the results in the linear
setting, it is natural to look at a polarized form of the Tree Theorem.

In order to formulate a polarized Ramsey theorem on trees, we must describe a
way to interweave sequences of trees. One method to interweave a sequence of n
trees, each isomorphic to 2<N, is to construct a copy of 2<N with each node replaced
by a linearly ordered sequence of n nodes containing one representative from each
tree (in order). Another method, which we have chosen, is to divide a copy of 2<N up
by levels. A polarized Ramsey theorem on trees can be formalized in each of these
settings, and it can be shown that the results will be the same. We have chosen the
formalization that we feel is easier to work with notationally.

Definition 1.4 Suppose S is a subtree of 2<N and g : 2<N→ S is a bijection witness-
ing that S is order isomorphic to 2<N. For n≥ 1, the sequence S0, . . . ,Sn−1 of stratified
subtrees (mod n) is defined by

S j = {σ ∈ S | |g−1(σ)| ≡ j mod n}

for each j < n. We write S = 〈S0, . . . ,Sn−1〉.

We can then define the analog of p-homogeneity in the tree setting, emulating Defi-
nition 1.3 of [6].

Definition 1.5 Let n,k ≥ 1 and suppose f : [2<N]n→ k.

1. A subtree S = 〈S0, . . . ,Sn−1〉 ∼= 2<N is said to be a p-homogeneous set for f if
there is some c< k such that f ({σ0, . . . ,σn−1}) = c for every set {σ0, . . . ,σn−1} ∈
[2<N]n satisfying 〈σ0, . . . ,σn−1〉 ∈ S0×·· ·×Sn−1.

2. If the preceding holds just for subsets {σ0, . . . ,σn−1} satisfying σ0 ⊂ ·· · ⊂ σn−1,
then we call S an increasing p-homogeneous set.

As in [6], we can formalize the polarized tree theorem in RCA0.

(Increasing) Polarized Tree Theorem Let n,k ≥ 1.

PTTn
k : Every k-coloring f : [2<N]n→ k has a p-homogeneous set.

PTTn: For every k ≥ 1, PTTn
k .

PTT : For every n≥ 1, PTTn.
IPTTn

k : Every k-coloring f : [2<N]n→ k has an increasing p-homogeneous set.
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IPTTn: For every k ≥ 1, IPTTn
k .

IPTT : For every n≥ 1, IPTTn.

The following result is clear.

Proposition 1.6 (RCA0) For every n,k ≥ 1, PTTn
k → IPTTn

k .

In this paper, we extend Chubb, Hirst, and McNicholl’s results [4] for the tree ver-
sion of Ramsey’s theorem, with an emphasis on notions of stability for colorings of
comparable pairs of strings. Our results show that, for exponent 3 and higher, the Po-
larized Tree Theorem and the Polarized Ramsey Theorem are equivalent over RCA0.
However, we shall see in the case of exponent 2 that the polarized versions of the
Tree Theorem seem more problematic than the polarized versions of the linear Ram-
sey’s Theorem. In particular, we shall see that the Polarized Tree Theorem for pairs
is (apparently) weaker than the Tree Theorem for pairs. It could be that the linear
form of Ramsey’s theorem for pairs proves the Polarized Tree Theorem for pairs, and
this could provide a way to connect linear results with the tree results for pairs. Con-
versely, the tree setting has exposed just how essential linearity is to many arguments
about Ramsey’s theorem. Identifying further examples of this phenomenon, as we do
in this paper, could thus lead to a better understanding of the key differences between
Ramsey’s theorem and the Tree Theorem.

2 The polarized tree theorem (PTT)

We begin with a computability-theoretic investigation of the polarized version of the
Tree Theorem. Dzhafarov and Hirst ([6], Remark 1.4) noted that RTn → PTn (over
RCA0), since every homogeneous set H for a k-coloring f of [N]n computes the p-
homogeneous set 〈H, . . . ,H〉 (i.e., Hi = H for all 0≤ i < n) for f . Since every tree T
isomorphic to 2<N can be viewed as a sequence of stratified subtrees, the following
is immediate.

Proposition 2.1 (RCA0) For every n,k ≥ 1, TTn
k → PTTn

k .

The following observation of Chubb, Hirst, and McNicholl ([4], proof of Theo-
rem 1.5) is also useful.

Remark 2.2 Every coloring f : [N]n→ k induces a coloring g : [2<N]n→ k defined by
g(σ0, . . . ,σn−1) = f (|σ0|, . . . , |σn−1|) for all {σ0, . . . ,σn−1} ∈ [2<N]n. Every homoge-
neous set T ∼= 2<N for g computes an infinite homogeneous set (in the linear sense)
for f . Similarly, every p-homogeneous set T = 〈T0, . . . ,Tn−1〉 ∼= 2<N for g computes
a p-homogeneous set (in the linear sense of [6]) for f .

In his 1972 paper [9], Jockusch studied the complexity, in terms of Turing degree
and arithmetic definability, of homogeneous sets for computable finite colorings of
[N]n.

Theorem 2.3 ([9], Theorem 5.5, Theorem 5.6, Theorem 5.7) Fix k ≥ 1.

1. For all n≥ 1, every computable f : [N]n→ k has a Π 0
n homogeneous set.
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2. For all n≥ 1, every computable f : [N]n→ k has a homogeneous set A such that
A′ ≤T 0(n).

3. For every n ≥ 2, there exists a computable f : [N]n+1 → 2 such that for every
homogeneous set A, 0(n−1) ≤T A.

Dzhafarov and Hirst ([6], Theorems 2.1 and 2.3) showed that the analogues of
Theorem 2.3 (1) and (2) hold for p-homogeneous sets, and that the analogue of The-
orem 2.3 (3) holds for increasing p-homogeneous sets. By Remark 2.2, the analogue
of (3) (and, in fact, several other existential results) also holds in the tree setting. In
addition, Chubb, Hirst, and McNicholl ([4], Theorem 2.7) showed that the analogue
of Theorem 2.3 (1) holds for finite computable colorings of [2<N]n. The analogue of
Theorem 2.3 (2) for finite computable colorings of [2<N]n also follows immediately
from their results. Since a proof is not given explicitly in [4], we provide a sketch, as
Theorem 2.5, for completeness.

We first note that the proofs of Theorem 2.3 (1) and (2) are by induction on n. In
the inductive step, Jockusch uses the fact ([9], Lemma 5.4) that for every computable
finite coloring of [N]n+1, there is an infinite set A such that A′ ≤T 0′′ and for all
a0 < a1 < · · · < an−1 < b1,b2 in A, f (a0,a1, . . . ,an−1,b1) = f (a0,a1, . . . ,an−1,b2).
Chubb, Hirst, and McNicholl proved the following analogous result for [2<N]n+1

(while they stated their result for n > 1, their proof also works for n = 1).

Lemma 2.4 ([4], Lemma 2.6) Suppose that n,k ≥ 1 and f : [2<N]n+1 → k is com-
putable. There is a tree T which is isomorphic to 2<N such that the following hold:

1. T ′ ≤T 0′′.
2. If σ0, . . . ,σn−1 is a sequence of n comparable elements of T and τ1 and τ2 are

extensions of σn−1 in T , then f (σ0, . . . ,σn−1,τ1) = f (σ0, . . . ,σn−1,τ2).

Theorem 2.5 (implicit in [4]) For all n,k ≥ 1, every computable f : [2<N]n→ k has
a homogeneous set S such that S′ ≤T 0(n).

Proof We proceed by induction on n. For n = 1, the result is essentially Theorem 1.2
of [4] that for all k, TT1

k is provable in RCA0 +Σ 0
2 -IND. It is easy to adapt the proof

of this theorem to show that every computable f : 2<N→ k has a computable homo-
geneous set, and this argument clearly relativizes.

Next, assume that the result and all its relativizations hold for some n ≥ 1. Let
T0 ∼= 2<N be arbitrary, and suppose f : [T0]

n+1 → k is T0-computable. Let T ∼= 2<N

be as given by Lemma 2.4 relativized to T0, so that T ⊆ T0 and (T0⊕ T )′ ≤T T ′′0 .
Define f̂ : [T ]n → k as follows: given a sequence σ0 ⊆ ·· · ⊆ σn−1 of comparable
elements in T , let σn be the least extension of σn−1 in T , and let f̂ (σ0, . . . ,σn−1) =
f (σ0, . . . ,σn−1,σn). Note that f̂ ≤T f⊕T ≤T T0⊕T . By the inductive hypothesis, rel-
ativized to T0⊕T , choose a homogeneous set S⊆ T for f̂ such that S′ ≤T (T0⊕T )(n).
Then S is clearly homogeneous for f , and we have S′ ≤T T (n+1)

0 , as desired. ut

By Proposition 2.1 and the preceding comments, we immediately have the fol-
lowing.

Theorem 2.6 Fix n,k ≥ 1.
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1. Every computable f : [2<N]n→ k has a Π 0
n p-homogeneous set.

2. Every computable f : [2<N]n→ k has a p-homogeneous set whose jump is com-
putable in 0(n).

3. There exists a computable f : [2<N]n+1→ 2 such that every increasing p-homo-
geneous set computes 0(n−1).

3 Notions of stability

Recall that in the linear setting, a k-coloring f : [N]2 → k is stable if for all a ∈ N,
there exists b0 ∈ N such that for all b≥ b0, f (a,b0) = f (a,b). The stable versions of
Ramsey’s theorem in the linear and (increasing) polarized linear settings have been
studied in, for example, [1], [8], and [6].

Definition 3.1 (RCA0) Let n,k ≥ 1.

SRT2
k : Every stable k-coloring f : [N]2→ k has a homogeneous set.

SPT2
k : Every stable k-coloring f : [N]2→ k has a p-homogeneous set.

SIPT2
k : Every stable k-coloring f : [N]2→ k has an increasing p-homogeneous set.

SRT2, SPT2, and SIPT2 are then defined in the obvious way.

There are apparently several ways to formulate a notion of stability for colorings
of [2<N]2. In the definition below, the strongest version of stability corresponds to
moving from a stable coloring of [N]2 (the linear setting) to the induced coloring
of [2<N]2 as in Remark 2.2. The weakest version corresponds to the most obvious
rephrasing of the linear notion of stability in the tree setting.

Definition 3.2 (RCA0) Let k ≥ 1 and f : [2<N]2→ k. We say that f is

1. 1-stable if for every σ ∈ 2<N there exists c < k and n≥ |σ | such that f (σ ,τ) = c
for all τ ⊃ σ with |τ| ≥ n.

2. 2-stable if for every σ ∈ 2<N there is an n ≥ |σ | such that for every extension
τ ⊃ σ of length n, f (σ ,ρ) = f (σ ,τ) for every ρ ⊇ τ .

3. 3-stable if for each σ ∈ 2<N there exists c < k such that for every σ ′ ⊇ σ there
exists τ ⊃ σ ′ with f (σ ,ρ) = c for all ρ ⊇ τ .

4. 4-stable if for each σ ∈ 2<N and each σ ′ ⊇ σ , there exists τ ⊃ σ ′ such that
f (σ ,ρ) = f (σ ,τ) for all ρ ⊇ τ .

5. 5-stable if for every σ ∈ 2<N there is a σ ′ ⊃ σ such that f (σ ,τ) = f (σ ,σ ′) for
all τ ⊇ σ ′.

6. 6-stable if for every σ ∈ 2<N we can find a σ ′ ⊃ σ and a c < k such that for all
subtrees T extending σ ′ which are isomorphic to 2<N, there is a τ ∈ T such that
f (σ ,τ) = c.

Intuitively, we can think of the various notions of stability in the following way.
Given f : [2<N]2 → k, any fixed σ ∈ 2<N induces a coloring fσ of the (singleton)
nodes of the tree extending σ , namely, for τ ⊇ σ , fσ (τ) = f (σ ,τ). If f is 5-stable,
then every such induced coloring has at least one monochromatic “cone”. If f is 4-
stable, then monochromatic cones are dense in the ordering above σ . If f is 3-stable,
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then for each σ there is a single color such that the monochromatic cones of that color
are dense in the ordering above σ . If f is 2-stable, then there is a level of 2<N such
that each cone rooted at that level is colored the same as its root, and if f is 1-stable
then the color of each of these cones is the same.

We first present some results about the relationships between various notions of
stability. Note that while 6-stability may appear to be a weaker notion, it is in fact
equivalent to 5-stability.

Theorem 3.3 (RCA0) Let k ≥ 1. A k-coloring f : [2<N]2→ k is 5-stable if and only
if it is 6-stable.

Proof Working throughout in RCA0, first suppose f is 5-stable and fix σ . Applying
the definition of 5-stable, choose σ ′ ⊃ σ so that for all τ ⊇ σ ′, f (σ ,τ) = f (σ ,σ ′).
Set c = f (σ ,σ ′). Then for any subtree T of extensions of σ ′, every τ ∈ T satisfies
f (σ ,τ) = c. Hence f is 6-stable.

To prove the contrapositive of the converse, suppose f is not 5-stable and fix
σ such that for every σ ′ ⊃ σ there is a τ ⊇ σ ′ such that f (σ ,τ) 6= f (σ ,σ ′). Note
that for any σ ′ ⊃ σ and any c < k, either f (σ ,σ ′) 6= c or there is a τ ⊃ σ ′ such
that f (σ ,τ) 6= c. Now fix σ ′ ⊃ σ and c < k. Choose τ〈 〉 to be the least (proper or
improper) extension of σ ′ such that f (σ ,τ) 6= c. If τα has been selected, then for
each i ∈ {0,1} let τ

αai be the least extension of τα
ai such that f (σ ,τ

αai) 6= c. RCA0
suffices to prove that T = {τα | α ∈ 2<N} exists and that for every τ ∈ T , f (σ ,τ) 6= c.
Hence, f is not 6-stable. ut

The following relationships between the remaining notions of stability are obvi-
ous.

Proposition 3.4 (RCA0) Let k ≥ 1 and f : [2<N]2→ k. Then

f is 1-stable → f is 2-stable → f is 4-stable → f is 5-stable

and
f is 1-stable → f is 3-stable → f is 4-stable → f is 5-stable.

While there appears to be no obvious relationship between 2-stability and 3-
stability, when combined we obtain a partial converse to Proposition 3.4.

Theorem 3.5 (RCA0) Let k ≥ 1. For every k-coloring f of [2<N]2, f is 1-stable if
and only if f is both 2-stable and 3-stable.

Proof We work in RCA0. Let f : [2<N]2 → k. It is clear that if f is 1-stable, then
f is both 2-stable and 3-stable. So assume that f is both 2-stable and 3-stable. Let
σ ∈ 2<N be given. Since f is 2-stable, we may fix n > |σ | and m = 2n−|σ |− 1 such
that if τ0, . . . ,τm are all the extensions of σ of length n, then for all i, 0≤ i≤ m, and
for all τ ⊇ τi, f (σ ,τ) = f (σ ,τi). Since f is 3-stable, fix c< k such that for all σ ′ ⊇ σ ,
there exists τ ⊇ σ ′ such that f (σ ,ρ) = c for all ρ ⊇ τ .

Let τ ⊃ σ with |τ| ≥ n, and fix i, 0≤ i≤ m, such that σ ⊆ τi ⊆ τ . By 2-stability,
f (σ ,τi) = f (σ ,τ). By 3-stability, we may fix τ ′ ⊇ τ such that f (σ ,ρ) = c for all
ρ ⊇ τ ′. But τ ′ ⊇ τ ⊇ τi, so c = f (σ ,τ ′) = f (σ ,τi), and thus f (σ ,τ) = c, as desired.
Hence f is 1-stable. ut
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While the property of being 1-stable or 2-stable is preserved under subtrees, color-
ings which are 3-stable do not necessarily have this preservation property. This seems
to be a barrier to extending our proof of Theorem 3.14, below, beyond 2-stability.

Proposition 3.6 Let k ≥ 1. If f : [2<N]2 → k is 1-stable and T is a subtree of 2<N

order isomorphic to 2<N, then f � [T ]2 is also 1-stable. The same statement holds for
2-stable.

Proof This is immediate from the definitions of 1-stable and 2-stable. In each case,
for each σ , the choice of n for the full tree works for any subtree. ut

Proposition 3.7 There is a 3-stable coloring f : [2<N]2 → 3 and a subtree T order
isomorphic to 2<N such that f � [T ]2 is not 5-stable (and consequently is not 3-stable).

Proof The coloring f is defined in terms of a coloring h : 2<N→ 3 on single nodes.
When the length of a string σ ∈ 2<N is even, we can group the values of σ in con-
secutive pairs and consider the mod 4 representation. For example, the string 001110
corresponds to 032.

Define h for σ ∈ 2<N by:

h(σ) = 0 if σ = 〈 〉,
h(σ) = 1 if |σ | is odd,
h(σ) = 1 if |σ | is even and 2 or 3 appears in the mod 4 representation,
h(σ) = 0 if |σ | is even, no 2 or 3 appears in the mod 4 representation, and the last
digit of σ is 0, and
h(σ) = 2 if |σ | is even, no 2 or 3 appears in the mod 4 representation, and the last
digit of σ is 1.

For σ ⊂ τ , define f (σ ,τ) = h(τ). It is not hard to show that for every σ ′ ⊃ σ , there
is a τ ⊇ σ ′ such that f (σ ,ρ) = 1 for all ρ ⊇ τ , so f is 3-stable. Also, the subtree
of 2<N consisting of those nodes not colored 1 is order isomorphic to 2<N, and the
restriction of f to this subtree is not 5-stable. ut

We can define stable versions of the Tree Theorem and the (Increasing) Polarized
Tree Theorem in RCA0. The most obvious relationships among the various statements
are given below.

Definition 3.8 (Stable Tree Theorems) (RCA0) Let i ∈ {1,2,3,4,5} and k ≥ 1.

SiTT2
k : Every i-stable f : [2<N]2→ k has a homogeneous set.

SiPTT2
k : Every i-stable f : [2<N]2→ k has a p-homogeneous set.

SiIPTT2
k : Every i-stable f : [2<N]2→ k has an increasing p-homogeneous set.

SiTT2, SiPTT2, and SiIPTT2 are then defined in the obvious way.

Corollary 3.9 (Corollary to Proposition 3.4) RCA0 proves that for each k ≥ 1,

S5TT2
k → S4TT2

k → S2TT2
k → S1TT2

k ,

and
S4TT2

k → S3TT2
k → S1TT2

k .

The analogous statements hold for the polarized and increasing polarized versions
of the Stable Tree Theorem.
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Proposition 3.10 For each i ∈ {1,2,3,4,5}, RCA0 proves that for every k ≥ 1,

1. PTT2
k → SiPTT2

k .
2. IPTT2

k → SiIPTT2
k .

3. SiTT2
k → SiPTT2

k → SiIPTT2
k .

Proposition 3.11 For each i ∈ {1,2,3,4,5}, RCA0 proves that for every k ≥ 1,

1. SiPTT2
k → SPT2

k
2. SiIPTT2

k → SIPT2
k

Proof This follows from Remark 2.2; note that when f : [N]2→ k is stable, then the
induced coloring of [2<N]2 in Remark 2.2 is 1-stable, and hence i-stable for each
i ∈ {1,2,3,4,5}. ut

The next theorem shows that Proposition 2.2 of [6] holds for trees and leads to
a proof that the 2-stable Tree Theorem and the 2-stable (Increasing) Polarized Tree
Theorems are equivalent.

Theorem 3.12 For every k ≥ 1 and every 2-stable f : [2<N]2→ k, every increasing
p-homogeneous set for f computes a homogeneous one.

Proof Let f : [2<N]2 → k be 2-stable, and let S = 〈S0,S1〉 ∼= 2<N be an increasing
p-homogeneous set for f with color c < k. Let S = {στ | τ ∈ 2<N}, so that S0 =
{στ | |τ| ≡ 0 mod 2} and S1 = {στ | |τ| ≡ 1 mod 2}. We construct a homogeneous
subtree R = {pτ | τ ∈ 2<N} isomorphic to 2<N such that R⊆ S0 by enumerating R in
“increasing order”, using S as an oracle.

Let p〈 〉 = σ〈 〉. At stage n+1, n≥ 0, we assume that R has been defined through
height n; i.e., assume we have Rn = {pτ | τ ∈ 2≤n} ⊆ S0, where 2≤n denotes the full
binary tree of height n, and assume that for all α ⊂ β in Rn, f (α,β ) = c.

Given a leaf pτ ∈ Rn, we define p
τa0 and p

τa1. Note that because f is defined
only on pairs of comparable strings, we need only be sure that for all ρ ⊆ pτ , ρ ∈ Rn,
f (ρ, p

τa0) = f (ρ, p
τa1) = c.

By the 2-stability of f , for each α ⊆ τ , there is a level nα such that for any
extension σ of pα of length nα , f (pα ,σ) = f (pα ,σ

′) for every σ ′ extending σ .
This implies that for any extension σ of pα of length greater than or equal to nα ,
and for every σ ′ extending σ , we have f (pα ,σ) = f (pα ,σ

′). If σ is an extension
of pα of length at least nα and σ ∈ S0, then there is a σ ′ ⊇ σ with σ ′ ∈ S1. By the
p-homogeneity of S, we know f (pα ,σ

′) = c, so since f (pα ,σ) = f (pα ,σ
′), we have

f (pα ,σ) = c also. Summarizing, if σ is an extension of pα of length at least nα and
σ ∈ S0, then f (pα ,σ) = c. In particular, for every σ ⊃ pτ in S0 of length at least
max{nα | α ⊆ τ}, we have f (ρ,σ) = c for all ρ ⊆ pτ .

We may therefore successfully search S-computably for the least incomparable
strings τ0,τ1 ∈ 2<N such that |τ0| ≡ |τ1| ≡ 0 mod 2 (so that στ0 ,στ1 ∈ S0), στ0 and
στ1 extend pτ , and for all ρ ⊆ pτ in Rn, f (ρ,στ0) = f (ρ,στ1) = c. Define p

τa0 = στ0
and p

τa1 = στ1 . Finally, define

Rn+1 = Rn∪{p
τai | τ ∈ 2<N∧|τ|= n∧ i ∈ {0,1}}.

The set R = ∪n∈NRn is S-computable and homogeneous for f .
ut



10

Note that BΣ 0
2 suffices to formalize the proof of Theorem 3.12. Since every 1-

stable coloring is 2-stable, the next corollary follows immediately.

Corollary 3.13 For every k ≥ 1 and every 1-stable f : [2<N]2→ k, every increasing
p-homogeneous set for f computes a homogeneous one.

The following reverse mathematics results also follow from Theorem 3.12.

Theorem 3.14 For i ∈ {1,2}, RCA0 proves

1. For every k ≥ 1, SiTT2
k ↔ SiPTT2

k ↔ SiIPTT2
k .

2. SiTT2↔ SiPTT2↔ SiIPTT2.

Proof Let i∈ {1,2}. We work in RCA0. By Proposition 3.10, we need only show that
SiIPTT2

k → SiTT2
k . For k = 1, this is trivial. Assume SiIPTT2

k and k ≥ 2. First note
that SiIPTT2

k → SIPT2
k by Proposition 3.11. By Theorem 3.5 of [6], SIPT2

k → D2
k ,

where D2
k is the statement (in second order arithmetic) that for every stable f : [N]2→

k, there exist an infinite set X and c < k such that lims f (x,s) = c for all x ∈ X . By
Chong, Lempp, and Yang ([3], Theorem 1.4), D2

k → BΣ 0
2 . Hence we may assume

BΣ 0
2 . Thus, if we let f : [2<N]2→ k be i-stable, f has a p-homogeneous set by SiIPTT2

k
and hence a homogeneous set by (the formalization of the proof of) Theorem 3.12.
The second statement follows immediately. ut

We have not been successful in proving a version of Theorem 3.12 for other
versions of stability. Consequently we are interested in properties that characterize
1-stable and 2-stable colorings. As already noted, Propositions 3.6 and 3.7 describe a
property that is common to 1-stable and 2-stable colorings, but not 3-stable colorings.

Next we consider a potential idea for proving the equivalence of TT2
2 and PTT2

2.
We require the following statements, which can be formalized in RCA0.

Definition 3.15 (RCA0)

COH: For every sequence 〈Xi | i ∈ N〉, there exists an infinite set X such that for
every i ∈ N, either X ⊆∗ Xi or X ⊆∗ Xi.

ADS: For every linear order � on N there exists an infinite set X ⊆ N which, under
�, is either an ascending sequence or else a descending sequence.

Cholak, Jockusch, and Slaman ([1], corrigendum in [2]) showed that, in the linear
case, Ramsey’s theorem for pairs can be broken up into the stable version and a
statement about cohesiveness.

Proposition 3.16 ([1], Lemma 7.11; see also [2]) RCA0 ` RT2
2↔ SRT2

2 +COH.

The proof of the preceding result relies on the idea that, when X is a cohesive
set (i.e., a set X that satisfies COH for an appropriate sequence 〈Xi | i ∈ N〉) and
f : [N]2→ 2, f � [X ]2 is stable. This fact motivates the next definition.

Definition 3.17 (RCA0) Let k ≥ 1 and i ∈ {1,2,3,4,5}.

CiTT2
k : For every f : [2<N]2→ k there exists T ∼= 2<N such that f � [T ]2 is i-stable.
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The following result is easy to prove.

Proposition 3.18 Let k ≥ 1. For each i ∈ {1,2,3,4,5},

RCA0 ` TT2
k ↔ SiTT2

k +CiTT2
k .

Dzhafarov and Hirst ([6], Theorem 3.8) used Proposition 3.16 to show that, over
RCA0, PT2

2 implies RT2
2. Their proof showed that, over RCA0, PT2

2 implies ADS and
relied on Hirschfeldt and Shore’s result ([7], Proposition 2.10) that, over RCA0, ADS
implies COH. While emulating this idea for trees does not apparently establish the
desired result, that over RCA0, PTT2

2 implies TT2
2, it produces a partial step toward

this result. However, it also again raises the possibility that there exist different forms
of stability for trees with associated Ramsey theorems of different proof theoretic
strengths. We begin with some definitions.

Definition 3.19

1. A tree-linear ordering on T ⊆ 2<N is a reflexive, transitive, and antisymmetric
relation � such that for all comparable σ ,τ ∈ T , either σ � τ or τ � σ .

2. Given a tree-linear ordering� on 2<N, we call T ⊆ 2<N ascending for this order-
ing if for all σ ,τ ∈ T , σ ⊆ τ if and only if σ � τ , and we call S descending if
instead σ ⊆ τ if and only if τ � σ .

The following statement of the tree version of ADS can be made in RCA0.

Definition 3.20 (RCA0)

TADS: For every tree-linear ordering � on 2<N there exists T ∼= 2<N which is either
ascending or descending for this ordering.

The proof of the next proposition is motivated by Hirschfeldt and Shore’s proof of
Proposition 2.10 in [7].

Proposition 3.21 RCA0 ` TADS→ C4TT2
2.

Proof Let f : [2<N]2→ 2 be given. Define a tree-linear ordering� on 2<N as follows:
for σ ⊆ τ , let σ � τ if 〈 f (ρ,σ) | ρ ⊆ σ〉 ≤lex 〈 f (ρ,τ) | ρ ⊆ τ〉, and otherwise let
τ �σ . Apply TADS to obtain T ∼= 2<N which is, say, ascending for� (the descending
case being analogous). We claim that f � [T ]2 is 4-stable. Let σ ,σ ′ ∈ T with σ ′ ⊃ σ ,
and let rσ ∈ 2<N be the lexicographically greatest string of length |σ |+1 such that

(∃τ ⊃ σ
′)[τ ∈ T ∧ rσ ≤lex 〈 f (ρ,τ) | ρ ⊆ τ〉 ],

which exists because there are only finitely many strings of length |σ |+1 and because
0|σ |+1 ≤lex 〈 f (ρ,τ ′) | ρ ⊆ τ ′〉 for all τ ′ ⊃ σ ′. Fix the least corresponding τ . Since
T is ascending, we must have rσ ≤lex 〈 f (ρ,τ ′) | ρ ⊆ τ ′〉, and hence also rσ ≤lex
〈 f (ρ,τ ′) | ρ ⊆ τ ′ � |σ |+ 1〉, for all τ ′ ⊇ τ with τ ′ ∈ T . But by our choice of rσ ,
this means that rσ = 〈 f (ρ,τ ′) | ρ ⊆ τ ′ � |σ |+1〉 for all τ ′ ⊇ τ with τ ′ ∈ T , because
〈 f (ρ,τ ′) | ρ ⊆ τ ′ � |σ |+ 1〉 ≤lex 〈 f (ρ,τ ′) | ρ ⊆ τ ′〉 for all τ ′. Hence, for all τ ′ ⊇ τ

with τ ′ ∈ T , we have f (σ ,τ ′) = rσ (|σ |). Since σ and σ ′ were chosen arbitrarily, this
proves the claim. ut



12

Proposition 3.22 RCA0 ` PTT2
2→ TADS.

Proof Fix a tree-linear ordering � on 2<N. Define f : [2<N]2→ 2 by

f (σ ,τ) =

{
0 if σ � τ

1 if τ � σ

for all σ ⊆ τ . Let 〈S0,S1〉 be a p-homogeneous set for f , as given by PTT2
2. We define

T = {tσ | σ ∈ 2<N} isomorphic to 2<N which is either ascending or descending for
�. Let t〈 〉 be the bottom node of S0, and suppose that for some σ ⊇ 〈 〉 we have
defined tσ . Let t

σa0 and t
σa1 be the least incompatible extensions of σ in S1 if |σ | is

even, in S0 if |σ | is odd. Then T exists by ∆ 0
1 -comprehension and clearly T ∼= 2<N.

Furthermore, by p-homogeneity there exists c < 2 such that for every σ ∈ 2<N and
i < 2, we have f (tσ , tσai) = c, so by definition of f , either tσ � t

σai for all σ and
i, or t

σai � tσ for all σ and i. Thus, T is either ascending or descending for �, as
desired. ut

Corollary 3.23 RCA0 ` PTT2
2↔ S4PTT2

2 +C4TT2
2.

One way, then, to prove the equivalence of PTT2
2 with TT2

2, would be to get Theo-
rem 3.14 to work for 4-stability, i.e, to show that S4PTT2

2 is equivalent to S4TT2
2 over

RCA0. Another way would be to strengthen Proposition 3.21 by replacing C4TT2
2

with C1TT2
2 or C2TT2

2. We do not know if either of these approaches is viable.

4 ∆ 0
2 upper bounds and the Stable Tree Theorem

The following result on ∆ 0
2 upper bounds in the linear setting appears in [1] and is

well known.

Proposition 4.1 ([1], Lemma 3.5) Let k ≥ 1. For any computable stable k-coloring
f of [N]2, there are k disjoint ∆ 0

2 sets Ai such that
⊔

i<k Ai =N and any infinite subset
of any Ai computes a homogeneous set for f .

Since (as noted earlier) every homogeneous set computes a p-homogeneous one, this
result also holds in the polarized linear setting (see [6], Theorem 2.1 (3)).

In the tree setting, we can investigate this result from the different points of view
afforded by our various notions of stability. We first consider 1-stable colorings.

Definition 4.2 Suppose k ≥ 1, f : [2<N]2→ k is 1-stable and c < k.

1. We write lim1,τ↑ f (σ ,τ) = c if there is an n ≥ |σ | such that ∀τ ⊃ σ(|τ| ≥ n→
f (σ ,τ) = c).

2. We let A f
c = {σ ∈ 2<N | lim1,τ↑ f (σ ,τ) = c}.

Note that when f : [2<N]2→ k is 1-stable, then each set A f
c , c < k, is ∆ 0

2 , relative to
f , and that 2<N =

⊔
c<k A f

c .
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Lemma 4.3 Suppose k ≥ 1 and f : [2<N]2 → k is 1-stable. There is a coloring f ∗ :
2<N→ k such that f ∗ ≤T f ′ (i.e. f ∗ is computable from the jump of f ) and for all σ ,
f ∗(σ) = c if and only if lim1,τ↑ f (σ ,τ) = c.

Proof Suppose f : [2<N]2 → k is 1-stable. Fix σ ∈ 2<N and let τ0,τ1, . . . be some
standard computable enumeration of the extensions of σ . Starting with i = 0, use
the jump of f to determine if (∀τ ⊃ τi)[ f (σ ,τ) = f (σ ,τi)]. If the answer is yes, set
f ∗(σ) = f (σ ,τi). Otherwise, increment i. Since f is 1-stable, this process always
halts, and sets f ∗(σ) equal to lim1,τ↑ f (σ ,τ). ut

Lemma 4.4 Let k ≥ 1. Suppose f : [2<N]2→ k is 1-stable, c < k, and S is a subtree
isomorphic to 2<N such that for all σ ∈ S, lim1,τ↑ f (σ ,τ) = c. Then there is a subtree
T of S which is computable from S, isomorphic to 2<N, and homogeneous for f .

Proof Suppose f , S, and c are as in the hypothesis of the lemma. Label the nodes
of S as {sσ | σ ∈ 2<N} so that the function h : 2<N→ S defined by h(σ) = sσ is an
order isomorphism. Since S is order isomorphic to 2<N, such a labeling is computable
from S. Fix an enumeration (computable in S) of the nodes extending each node of
S. Define T = {tσ | σ ∈ 2<N} as follows. Set t〈 〉 = s〈 〉. If tσ has been calculated,
let t

σa0 and t
σa1 be the first pair of incomparable proper extensions of tσ in S such

that (∀ρ ⊆ σ)[ f (tρ , tσa0) = f (tρ , tσa1) = c]. Since f is 1-stable, tσ exists for each
σ ∈ 2<N, and T = {tσ | σ ∈ 2<N} is computable from S. By our construction, T is
order isomorphic to 2<N and homogeneous for f . ut

Corollary 4.5 Let k ≥ 1. For any computable 1-stable k-coloring of [2<N]2, there
are k disjoint ∆ 0

2 subsets A f
c , c < k, of 2<N with

⊔
c<k A f

c = 2<N such that any subset
S∼= 2<N of any A f

c computes a homogeneous set for f .

Theorem 4.6 Every computable 1-stable finite coloring of [2<N]2 has a ∆ 0
2 homoge-

nous set.

Proof Suppose f : [2<N]2→ k is a computable 1-stable coloring. Apply Corollary 4.5
to obtain a ∆ 0

2 k-coloring g : [2<N]1→ k such that any homogeneous set for g com-
putes a homogenous set for f . By the proof of Theorem 1.2 of [4], relativized to g,
there is a homogeneous set S for g with S ≤T g. Let T be a homogeneous set for f
with T ≤T S. Clearly T ≤T S≤T g≤T 0′, so T is ∆ 0

2 . ut

Corollary 4.7 Every computable 1-stable finite coloring of [2<N]2 has a ∆ 0
2 p-homo-

geneous set.

Proof By Theorem 4.6 we can find a homogeneous set computable from 0′. Taking
alternating levels provides a p-homogeneous set computable from 0′ and therefore
∆ 0

2 . ut

Note that if f is a 2-stable k-coloring of [2<N]2, then the sets A f
c , c < k, no longer

partition 2<N. For example, if f : [2<N]2 → 2 is 2-stable, then 2<N is the disjoint
union of three sets: A f

0 ,A
f
1 , and a “mixed” set

A f
0,1 = {σ ∈ 2<N | (∀n)(∀i < 2)(∃τ ⊃ σ)[|τ|> n∧ f (σ ,τ) = i]}.
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It turns out that this mixed set does not necessarily have the property described in
Corollary 4.5, that any subset S ∼= 2<N of it computes a homogeneous set for f , as
the following theorem shows.

Theorem 4.8 There exists a 2-stable computable f : [2<N]2→ 2 and a subtree T ∼=
2<N of A f

0,1 which computes no homogeneous set for f .

Proof We build a 2-stable f : [2<N]2 → 2 with A f
0,1 = 2<N such that f has no com-

putable homogeneous set. Since A f
0,1 = 2<N is computable, the result follows imme-

diately.
Suppose g : [N]2 → 2 is a computable stable coloring of pairs of natural num-

bers which has no computable homogeneous set (such a coloring exists by Proposi-
tion 2.14 of [8]). Define f : [2<N]2→ 2 by

f (σ ,τ) =

{
g(|σ |, |τ|) if τ ⊇ σa1,
1−g(|σ |, |τ|) if τ ⊇ σa0.

To see that f is 2-stable, fix σ and, by stability of g, choose n0 so large that for all
m ≥ n0, g(|σ |,m) = g(|σ |,n0). Thus, for all τ ⊃ σ with |τ| ≥ n0, and for all ρ ⊇ τ ,
f (σ ,ρ) = f (σ ,τ). Thus, f is 2-stable. Furthermore, when n0, ρ , and τ are as above,
either τ ⊇ σa1, in which case f (σ ,ρ) = f (σ ,τ) = g(|σ |,n0), or τ ⊇ σa0, in which
case f (σ ,ρ) = f (σ ,τ) = 1−g(|σ |,n0). Since both options must occur, σ ∈ A f

0,1, and

since σ was arbitrary, A f
0,1 = 2<N.

Now we will show that every homogeneous set for f computes a homogeneous
set for g. Let T ∼= 2<N be a homogeneous set for f , and let σ1,σ2, . . . enumerate the
leftmost path in T . Consider the sets

H0 = {|σi| | i ∈ N∧σi+1 ⊇ σ
a
i 0} and H1 = {|σi| | i ∈ N∧σi+1 ⊇ σ

a
i 1}.

Note that both of these sets are computable from T , and at least one of them is in-
finite and thereby homogeneous for g, so our claim follows. Finally, since g has no
computable homogeneous set, neither does f . ut

Even so, we can modify the argument of Theorem 4.6 to obtain the result for
5-stable colorings.

Definition 4.9 Let k ≥ 1 and suppose f : [2<N]2→ k is 5-stable. Fix an enumeration
of the proper extensions of each node of 2<N. Let τ0 be the least node extending σ

such that f (σ ,τ) = f (σ ,τ0) for all τ ⊇ τ0. Then we write lim5,τ↑ f (σ ,τ) = f (σ ,τ0),
and ρlim( f ,σ) = τ0.

Recall that we can think of a 5-stable coloring as one in which the induced maps
are eventually constant on the subtree above some node; the limiting value may de-
pend on the choice of the subtree. In the preceding definition, the use of the enumer-
ation makes the limiting value uniquely determined, and the ρlim function points to
the defining root. Neither the limit nor the root function need be computable from f ,
but both are computable from the jump of f .
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Lemma 4.10 Suppose k ≥ 1 and f : [2<N]2 → k is 5-stable. Then we can find a
subtree H isomorphic to 2<N and a function f ∗ : H→ k such that

(1) both H and f ∗ are computable from the jump of f ,
(2) f is 1-stable on H, and
(3) for all σ ∈ H, f ∗(σ) = c if and only if lim1,τ↑ f (σ ,τ) = c, relative to H.

Proof Suppose f : [2<N]2 → k is 5-stable. Modifying the proof of Lemma 4.3, we
construct f ∗ and h= {hσ | σ ∈ 2<N} simultaneously. Let h〈 〉 = 〈 〉. Use the jump of f
to evaluate lim5,τ↑ f (〈 〉,τ) and set f ∗(h〈 〉) = lim5,τ↑ f (〈 〉,τ). Suppose hσ is defined
and f ∗ is defined for all hτ with τ ⊂ σ . Use the jump of f to evaluate ρlim( f ,hσ )
and set h

σai = ρlim( f ,hσ )
ai for i ∈ {0,1}. For each i ∈ {0,1}, use the jump of f to

evaluate lim5,τ↑ f (h
σai,τ) and set f ∗(h

σai) = lim5,τ↑ f (h
σai,τ). It is straightforward

to verify that the construction yields f ∗ and H satisfying the statement of the lemma.
ut

Theorem 4.11 Every computable 5-stable finite coloring of [2<N]2 has a ∆ 0
2 homo-

geneous set and a ∆ 0
2 p-homogeneous set. Furthermore, this results holds for i-stable

colorings for all i≤ 5.

Proof Suppose f is 5-stable. Apply Lemma 4.10 to find f ∗ and H, then rerun the
proofs of Lemma 4.4, Theorem 4.6, and Corollary 4.7, all relativized to H. The final
sentence follows immediately from the fact that every i-stability previously defined
implies 5-stability. ut

5 Questions

Although the computability theory and reverse mathematics of the polarized tree the-
orem for triples and above exactly parallels the linear case, we have many questions
concerning the results for pairs. We hope that resolving these questions may lead to
a deeper understanding of Ramsey’s theorem for pairs. Of particular note is the pro-
fusion of versions of stability in the tree setting. Our versions are somewhat ad hoc;
certainly more concepts of stability could be formulated and explored. This leads us
to ask:

Q1: What other forms of stability may be of interest? Is it possible to characterize all
reasonable notions of stability in a systematic fashion?

Q2: Are there forms of stability that yield provably distinct results in reverse mathe-
matics or computability theory? Specifically, does Theorem 3.12 fail for 3-stable
colorings? Similarly, does Proposition 3.21 fail for 2-stable colorings?

It may be possible to prove results for trees that are open in the linear setting.

Q3: Can any of the one-way arrows in the diagram from Section 3 of [6] be reversed
for trees?

Perhaps a statement about trees can be applied to deduce an apparently stronger
statement in the linear setting. Examples of questions of this sort include:
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Q4: Does SiTT2 imply IPT2 for any i ∈ {1,2,3,4,5}? Does IPTT2 imply RT2?

As mentioned at the conclusion of Section 3, we do not know the answer to the
following question.

Q5: Does PTT2 imply TT2? Does PTT2
k imply TT2

k?

This list of questions is certainly incomplete. Our work was motivated in part
by questions posed at the workshop on Computability, Reverse Mathematics, and
Combinatorics held at the Banff International Research Station in December of 2008
(see [5]). The list of open problems from that meeting could be used to generate many
additional questions pertaining to polarized and stable tree theorems.
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