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Abstract. We prove that the statement “there is a k such that for every f there is a k-bounded di-
agonally non-recursive function relative to f” does not imply weak König’s lemma over RCA0+BΣ0

2.
This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic
fact that every k-bounded diagonally non-recursive function computes a 2-bounded diagonally non-
recursive function may fail in the absence of IΣ0

2.

1. Introduction

It is a truth universally acknowledged, that a single man in possession of a good
k-bounded diagonally non-recursive function, must be in want of a 2-bounded diag-
onally non-recursive function [2].

An enduring project in recursion theory is to determine the amount of induction necessary to
prove its classic theorems, particularly those concerning the recursively enumerable sets. Post’s
problem and the Friedberg-Muchnik theorem [5, 23, 29], the Sacks splitting theorem [23, 29], the
Sacks density theorem [16], the infinite injury method [6,10,11], and even the transitivity of Turing
reducibility [17] have all been investigated. The non-standard methods developed in the course of
these studies have been recently applied in reverse mathematics, an analysis of the logical strengths
of ordinary mathematical statements in the context of second-order arithmetic, and led to solutions
of several important open problems in the field. Remarkably, Chong, Slaman, and Yang proved
that stable Ramsey’s theorem for pairs is strictly weaker than Ramsey’s theorem for pairs [9] and
that Ramsey’s theorem for pairs does not imply induction for Σ0

2 predicates [8]. Furthermore, non-
standard techniques are necessarily employed in proofs of conservativity results over systems with
limited induction, such as the Π1

1-conservativities of the cohesive principle and the chain-antichain
principle over RCA0 plus bounding for Σ0

2 predicates [7]. Similarly, Corduan, Groszek, and Mileti
proved what may be described as a dual conservativity result: an extension of RCA0 by Π1

1 axioms
proves Ramsey’s theorem for singletons on the complete binary tree if and only if the extension
proves induction for Σ0

2 predicates [13]. It follows that RCA0 plus bounding for Σ0
2 predicates does

not prove Ramsey’s theorem for singletons on the complete binary tree, which answers a question
from [12]. For a comprehensive introduction to non-standard methods in recursion theory and
reverse mathematics, we refer the reader to the recent survey by Chong, Li, and Yang [4].

Within this framework of reverse mathematics, we study the logical strengths of several state-
ments asserting the existence of k-bounded diagonally non-recursive functions. Theorem 5 of
Jockusch’s classic analysis of diagonally non-recursive functions [21] states that every k-bounded
diagonally non-recursive function computes a 2-bounded diagonally non-recursive function. The
proof, which Jockusch attributes to Friedberg, is not uniform, and Jockusch proves that this is nec-
essarily the case: Theorem 6 of [21] implies that if k > 2 then there is no uniform (i.e., Medvedev)
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reduction from the class of k-bounded diagonally non-recursive functions to the class of 2-bounded
diagonally non-recursive functions. In a talk given at the 2001 Annual Meeting of the American
Philosophical Association [26], Simpson asked if the reduction from k-bounded diagonally non-
recursive functions to 2-bounded diagonally non-recursive functions can be implemented RCA0.
Specifically, he asked if the statement “there is a k such that for every X there a k-bounded di-
agonally non-recursive function relative to X” implies weak König’s lemma over RCA0. Our main
result is that although the statement in question indeed implies weak König’s lemma over RCA0

plus induction for Σ0
2 predicates, it does not imply weak König’s lemma over RCA0 plus bound-

ing for Σ0
2 predicates. Consequently, if induction for Σ0

2 predicates fails, there may be k-bounded
diagonally non-recursive functions (for some necessarily non-standard k) that do not compute 2-
bounded diagonally non-recursive functions. This result expresses a sense in which induction for Σ0

2

predicates is necessary to prove that every k-bounded diagonally non-recursive function computes
a 2-bounded diagonally non-recursive function.

2. Background

We define the fragments of first-order and second-order arithmetic that we consider in this work.
The standard references are Hájek and Pudlák’s Metamathematics of First-Order Arithmetic [19]
for fragments of first-order arithmetic and Simpson’s Subsystems of Second Order Arithmetic [27] for
fragments of second-order arithmetic in the context of reverse mathematics. Reverse mathematics
is a foundational program, introduced by Friedman in [14], dedicated to characterizing the logical
strengths of the classic theorems of mathematics when interpreted in second-order arithmetic. It
is thus a fundamentally proof-theoretic endeavor, although its techniques are primarily recursion-
theoretic. We encouragingly refer the interested reader to the introduction of Simpson’s book for
a hearty introduction to reverse mathematics and its metamathematical motivations.

We pause here to highlight one important notational convention. As is common when writing
about reverse mathematics, throughout this work we use the symbol ‘ω’ to refer to the standard
natural numbers and the symbol ‘N’ to refer to the first-order part of whatever structure is (often
implicitly) under consideration.

2.1. Fragments of first-order arithmetic. The basic axioms of Peano arithmetic, here denoted
PA−, express that N is a discretely ordered commutative semi-ring with 1. Peano arithmetic,
denoted PA, consists of PA− plus the induction scheme, which consists of the universal closures of
all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))]→ ∀nϕ(n).

Fragments of PA are obtained by limiting the quantifier complexity of the formulas ϕ allowed
in the induction scheme. For each n ∈ ω, the Σ0

n (Π0
n) induction scheme is the restriction of the

induction scheme to Σ0
n (Π0

n) formulas ϕ, and IΣ0
n (IΠ0

n) denotes the fragment of PA consisting
of PA− plus the Σ0

n (Π0
n) induction scheme. We express induction for ∆0

n predicates via the ∆0
n

induction scheme, which consists of the universal closures of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ([ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))]→ ∀nϕ(n)),

where ϕ is Σ0
n and ψ is Π0

n. The fragment I∆0
n is then PA− plus the the ∆0

n induction scheme.
We also consider fragments of PA obtained by adding so-called bounding schemes (also called

collection schemes). The Σ0
n (Π0

n) bounding scheme consists of the universal closures of all formulas
of the form

∀a[(∀n < a)(∃m)ϕ(n,m)→ ∃b(∀n < a)(∃m < b)ϕ(n,m)]

where ϕ is Σ0
n (Π0

n). The fragment BΣ0
n (BΠ0

n) is then IΣ0
0 plus the Σ0

n (Π0
n) bounding scheme.

The following theorem summarizes the relationships among these fragments.
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Theorem 2.1 (see [19] Theorem 2.4, [19] Theorem 2.5, and [28]). Let n ∈ ω. Over PA−:

• IΣ0
n and IΠ0

n are equivalent.
• BΣ0

n+1 and BΠ0
n are equivalent.

• IΣ0
n+1 is strictly stronger than BΣ0

n+1, which is strictly stronger than IΣ0
n.

• If n ≥ 2, then I∆0
n and BΣ0

n are equivalent (the proof uses the totality of the exponential
function, which is provable in IΣ0

1).

A cut in a model N of PA− is a set I ⊆ N such that ∀n∀m[(n ∈ I ∧ m < n) → m ∈ I] and
∀n(n ∈ I → n + 1 ∈ I). A cut I ⊆ N is called proper if I 6= ∅ and I 6= N. Definable proper cuts
witness failures of induction. Suppose that N |= PA−. If the induction axiom for ϕ fails in N, then
ψ(n) = (∀m < n)ϕ(m) defines a proper cut in N, and if ϕ defines a proper cut in N, then the
induction axiom for ϕ fails in N.

The following lemma, originally noticed by Friedman but by now part of the folklore, is key
to many recursion-theoretic constructions in models with limited induction, including the main
construction in this work.

Lemma 2.2. If N |= BΣ0
2 +¬IΣ0

2, then there are a proper Σ0
2 cut I ⊆ N and an increasing, cofinal

function c : I → N whose graph is ∆0
2.

Proof. Let ϕ(n) be a Σ0
2 formula witnessing the failure of IΣ0

2. That is, ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n +
1)) ∧ ∃n¬ϕ(n). Let I = {n : (∀m < n)ϕ(m)}. I is a proper cut, and using BΣ0

2 one proves that I
is Σ0

2. Let θ be Π0
1 such that I = {n : ∃mθ(n,m)}. Define the function c by c(n) = µmθ(n,m) and

observe that the graph of c is ∆0
2. By IΣ0

1, if there is an m such that θ(n,m), then there is a least
such m. Therefore dom(c) = I. Furthermore, ran(c) is unbounded, for if ∃b(∀n ∈ I)(c(n) < b),
then ∀n(n ∈ I ↔ (∃m < b)θ(n,m)), which constitutes a violation of IΣ0

1. If necessary, using BΣ0
2

we can dominate c by an increasing function with the same domain whose graph is still ∆0
2. �

2.2. Fragments of second-order arithmetic. Full second-order arithmetic consists of PA− plus
the universal closures of the induction axiom

[0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)]→ ∀n(n ∈ X)

and the comprehension scheme

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is any formula in the language of second-order arithmetic in which X is not free. In the
setting of second-order arithmetic, formulas may have free second-order parameters, and ‘universal
closure’ means closure under both first-order and second-order universal quantifiers.

Fragments of second-order arithmetic are obtained by replacing the induction axiom by an in-
duction scheme as in the first-order case and by limiting the comprehension scheme to formulas
of a certain complexity. We emphasize again that in the second-order setting a formula may have
free second-order parameters that are universally quantified in the corresponding induction axiom,
hence an induction axiom holding in some second-order structure means that it holds relative to
every second-order object in that structure. When studying reverse mathematics, we also produce
fragments of second-order arithmetic by adding the statement of a well-known theorem to another
fragment, as is the case in the system weak König’s lemma described below. This work is concerned
with the first two of the Big Five fragments of second-order arithmetic, recursive comprehension ax-
iom (RCA0) and weak König’s lemma (WKL0), as well as various fragments defined by statements
asserting the existence of diagonally non-recursive functions.

RCA0 is the fragment consisting of PA−, the second-order Σ0
1 induction scheme (which we still

refer to as IΣ0
1 in this setting), and the ∆0

1 comprehension scheme, which consists of the universal
closures of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),
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where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ.
The equivalences and implications of Theorem 2.1 hold over RCA0 in the second-order setting.

Most relevant to our purposes are that

• for all n ∈ ω, RCA0 + IΣ0
n and RCA0 + IΠ0

n are equivalent (in particular, RCA0 ` IΠ0
1);

• RCA0 + IΣ0
2 is strictly stronger than RCA0 + BΣ0

2, which is strictly stronger than RCA0;
and
• RCA0 + BΣ0

2 ` I∆0
2 (in particular, models of RCA0 + BΣ0

2 have no ∆0
2-definable cuts).

An important aid to working in RCA0 is the fact that RCA0 proves the bounded Σ0
1 comprehen-

sion scheme (see [27] Theorem II.3.9), which consists of the universal closures of all formulas of the
form

∀n∃X∀i[i ∈ X ↔ (i < n ∧ ϕ(i))],

where ϕ is a Σ0
1 formula in which X is not free. Contrastingly, adding the full Σ0

1 comprehension
scheme to RCA0 is equivalent to adding comprehension for all arithmetical formulas and results in
a stronger system denoted ACA0 (see [27] Theorem III.1.3).

RCA0 proves sufficient number-theoretic facts to implement the codings of sequences of numbers
as numbers that are typical in recursion theory. See [27] Section II.2 for a carefully formalized
development of such a coding. Thus in RCA0 we can interpret the existence of the set N<N of all
finite sequences (also called strings) and, more generally, give the usual definition of a tree as subset
of N<N that is closed under initial segments. We now fix our notation and terminology concerning
strings and trees. Let k, s ∈ N, σ, τ ∈ N<N, f : N→ N be a function, and T ⊆ N<N be a tree. Then

• k<N is the set of strings over {0, 1, . . . , k−1}, ks is the set of strings in k<N of length exactly
s, and k<s is the set of strings in k<N of length less than s;
• |σ| is the length of σ;
• σ ⊆ τ means that σ is a substring of τ ;
• f � n is the string 〈f(0), f(1), . . . , f(n− 1)〉;
• σ ⊆ f means that σ is an initial segment of f (i.e., σ = f � |σ|);
• f is a path through T if ∀n(f � n ∈ T ).

Weak König’s lemma (WKL) is the statement “every infinite subtree of 2<N has an infinite path,”
and WKL0 is the fragment RCA0 + WKL. WKL0 captures compactness arguments, and WKL is
equivalent to many classical theorems over RCA0. For example, the equivalence of WKL with the
Heine-Borel compactness of [0, 1], the extreme value theorem, Gödel’s completeness theorem, and
Brouwer’s fixed point theorem can all be found in [27].

Suppressing the basic relations and functions, a structure in the language of second-order arith-
metic is officially a pair (N,S), where the first-order part N is some set and the second-order part
S is a collection of subsets of N. However, via the simple coding of pairs possible in RCA0 and
the identification of a function f : N → N with its graph {〈n,m〉 : f(n) = m}, one immediately
sees that it is equivalent to consider structures in which the second-order part is a collection of
functions f : N → N. Thus we use the functional variant of second-order structures because it is
the more natural setting for our study.

2.3. Turing reducibility and Turing functionals. The standard definition of Turing reducibil-
ity in RCA0 is [27] Definition VII.1.4, which essentially says that Y ≤T X if Y is both r.e. and
co-r.e. in X.

Definition 2.3 ([27] Definition VII.1.4). Fix a universal lightface Π0
1 formula π(e,m,X) with

exactly the displayed variables free. For X,Y ⊆ N, we say that Y Turing reduces to X (Y ≤T X)
if there are e0, e1 ∈ N such that, for all m, m ∈ Y ↔ π(e0,m,X) and m /∈ Y ↔ π(e1,m,X).

Note that in the preceding definition m ∈ Y ↔ ¬π(e1,m,X), so ¬π(e1,m,X) is a Σ0
1 formula

essentially witnessing that Y is r.e. in X. Extending this notion, we can formalize statements
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involving recursive functionals as used in [30] Section III.1. For example, given e ∈ N we write

Φf
e (n) = m to represent a formula asserting that there is a coded sequence of configurations of the

eth Turing machine that starts with the machine’s initial configuration for input n, ends with the
machine’s output configuration for output m, and is such that each configuration in the sequence
follows from the previous one by the rules of the machine when equipped with oracle f . In this way

we think of Φf
e as a partial f -recursive function as usual, and for two functions f, g : N→ N, g ≤T f

if and only if there is an e such that g = Φf
e . We make the familiar definitions that Φf

e (n)↓ if there

is an m such that Φf
e (n) = m and that Φf

e (n) ↑ otherwise. Similarly, Φf
e,s(n) ↓ if Φf

e (n) ↓ within s

computational steps and Φf
e,s(n) ↑ otherwise. We follow the usual convention that the number of

steps in a computation relative to a partial oracle is bounded by the first position where the oracle

is undefined, such as with computations of the form Φσ
e (n) and Φf⊕σ

e (n), where σ is some finite
string.

The following notion will be useful to verify BΣ0
2 when constructing models.

Definition 2.4. We say that Y is low relative to X if ΦY
e (e)↓ is equivalent to a ∆0

2(X) statement.

Lemma 2.5 ([4] Proposition 4.14). If Y is low relative to X and BΣ0
2 holds relative to X then

BΣ0
2 also holds relative to Y .

2.4. Diagonally non-recursive functions in the formal setting. We now introduce the state-
ments expressing the existence of diagonally non-recursive functions that are the main focus of this
paper.

Definition 2.6. Let f and g be functions N→ N, and let k ∈ N.

• The function g is k-bounded if ran(g) ⊆ {0, 1, . . . , k − 1}.
• The function g is diagonally non-recursive relative to f (g is DNR(f) for short) if ∀e(g(e) 6=

Φf
e (e)).

• The function g is k-bounded diagonally non-recursive relative to f (g is DNR(k, f) for short)
if g is k-bounded and DNR(f).

In a slight overloading of notation we also let DNR(f) denote the formal statement “there is a g
that is DNR(f)” and let DNR(k, f) denote the formal statement “there is a g that is DNR(k, f).”

It is well-known that WKL and ∀fDNR(k, f) are equivalent over RCA0 for every fixed k ∈ ω
with k ≥ 2. WKL and ∀fDNR(2, f) are equivalent by the classic work of Jockusch and Soare [22],
and ∀fDNR(2, f) and ∀fDNR(k, f) are equivalent because if k ∈ ω and k ≥ 2, then the proof of
[21] Theorem 5 can be unwound in RCA0. It is also well-known that ∀fDNR(f) is strictly weaker
than WKL over RCA0. In fact, ∀fDNR(f) is strictly weaker than WWKL [1], which is strictly
weaker than WKL [31]. The purpose of this work is to analyze the strengths of the statements
∃k∀fDNR(k, f) and ∀f∃kDNR(k, f) over RCA0. With a little care, it is possible to implement
the proof of [21] Theorem 5 in RCA0 + IΣ0

2. Hence the statements WKL, ∃k∀fDNR(k, f), and
∀f∃kDNR(k, f) are all equivalent over RCA0 + IΣ0

2.

Theorem 2.7. RCA0 + IΣ0
2 + ∀f∃kDNR(k, f) ` ∀fDNR(2, f).

Proof. Suppose g is DNR(2k, f), and think of 2k as the set of strings over {0, 1} of length k. Define
a partial f -computable function b by

b(n) =


0 if Φf

n(n) = 0

1 if Φf
n(n) > 0

↑ if Φf
n(n)↑,

let ` : Nk → N be a partial computable function such that

(∀~n ∈ Nk)(∀x ∈ N)(Φf
`(~n)(x) = 〈b(n0), b(n1), . . . , b(nk−1)〉),
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and let h : k × Nk → 2 be the partial g-computable function defined by the equation

g(`(~n)) = 〈h(0, ~n), h(1, ~n), . . . , h(k − 1, ~n)〉.

By the Π0
2 least element principle, a consequence of RCA0 + IΣ0

2, let i be least such that

(∀~n ∈ Ni)(∃~m ∈ Nk−i)(∀j < k − i)(h(i+ j, ~na ~m) = Φf
mj

(mj)).

Notice that i > 0, for otherwise we would have an ~m ∈ Nk such that (∀j < k)(h(j, ~m) = Φf
mj (mj) =

b(mj)), in which case g(`(~m)) = Φf
`(~m)(`(~m)), contradicting that g is DNR(2k, f). Fix ~n ∈ Ni−1

such that (∀~m ∈ Nk−i+1)(∃j < k − i + 1)(h(i + j, ~na ~m) 6= Φf
mj (mj)). We can now describe a

DNR(2, f) function that is ≤T f ⊕ g. Given x ∈ N, search for an ~m ∈ Nk−i such that (∀j <
k − i)(h(i + j, ~naxa ~m) = Φf

mj (mj)), then output h(i − 1, ~naxa ~m). Such an ~m exists by choice of

i, and h(i− 1, ~naxa ~m) 6= Φf
x(x) by choice of ~n. �

In Section 4, we show that RCA0 + BΣ0
2 does not suffice to prove the equivalences of WKL,

∃k∀fDNR(k, f), and ∀f∃kDNR(k, f). Specifically, we prove

• Theorem 4.9: RCA0 + BΣ0
2 + ∀f∃kDNR(k, f) 0 ∃k∀fDNR(k, f), and

• Theorem 4.10: RCA0 + BΣ0
2 + ∃k∀fDNR(k, f) 0 WKL.

Hence, over RCA0 + BΣ0
2, ∀f∃kDNR(k, f) is strictly weaker than ∃k∀fDNR(k, f), which is strictly

weaker than WKL. These results are, in a sense, as strong as possible. It is of course nat-
ural to ask if there is a reversal of Theorem 2.7. That is, it is natural to ask if RCA0 `
(∃k∀fDNR(k, f) → WKL) → IΣ0

2. However, this is readily seen not to be the case because
WKL0 0 IΣ0

2. In fact, WKL0 0 BΣ0
2. No reversal over RCA0 + BΣ0

2 is possible either. That
is, RCA0 + BΣ0

2 0 (∃k∀fDNR(k, f) → WKL) → IΣ0
2. This is because WKL0 + BΣ0

2 0 IΣ0
2.

These comments all follow from the facts that WKL0 is Π1
1-conservative over RCA0 (see [27] Corol-

lary IX.2.6) and that WKL0 +BΣ0
2 is Π1

1-conservative over RCA0 +BΣ0
2 (see [18] or adapt the proof

of [27] Corollary IX.2.6).

3. A little combinatorics of trees

In this short section we isolate two facts concerning the combinatorics of finite trees. These facts
appear in [1], but we repeat them here for the sake of completeness and because it is important
for our purposes to emphasize that the proofs are formalizable in the first-order fragment IΣ0

1 and
hence in RCA0.

Definition 3.1 (see [1] Definition 2.3).

• The trunk of a finite tree T ⊆ N<N is the longest σ ∈ T such that every element of T is
comparable with σ.
• A finite tree T ⊆ N<N with trunk σ is ≥n-branching if every τ ⊇ σ in T that is not a leaf

has at least n immediate successors.

Lemma 3.2 (IΣ0
1; see [1] Lemma 2.5). Let m ≥ 1, let T ⊆ N<N be a finite, ≥ 2m-branching tree

with trunk σ, and let P0 and P1 be finite trees such that T ⊆ P0∪P1. Then there is a ≥m-branching
tree S ⊆ T with trunk σ such that leaves(S) ⊆ leaves(T ) and either S ⊆ P0 or S ⊆ P1.

Proof. For the purposes of this proof, define depth(T, σ) = max{|τ | − |σ| : τ ∈ T} for a finite tree
T ⊆ N<N with trunk σ. We prove the lemma by induction on depth(T, σ). If depth(T, σ) = 0, then
T = σ (we identify σ with {τ : τ ⊆ σ} for simplicity). Thus T ⊆ P0 ∪ P1 implies that σ ∈ Pi for
some i < 2, which implies that T ⊆ Pi. Now suppose that depth(T, σ) = n+ 1. Let (τj : j < 2m)
be the first 2m immediate successors of σ in T , and for each j < 2m, let Tj = {τ ∈ T : τ ⊇ τj}.
For each j < 2m, Tj is a ≥2m-branching tree with trunk τj , depth(Tj , τj) ≤ n, and Tj ⊆ P0 ∪ P1.
By induction, for each j < 2m there are an ij < 2 and a ≥m-branching subtree Sj ⊆ Tj with trunk
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τj such that leaves(Sj) ⊆ leaves(Tj) and Sj ⊆ Pij . There is then an i < 2 such that ij = i for at
least m of the ij . Let S =

⋃
{Sj : j < 2m ∧ ij = i}. Then S is a desired ≥m-branching subtree of

T with trunk σ such that leaves(S) ⊆ leaves(T ) and S ⊆ Pi. �

Lemma 3.3 (IΣ0
1; see [1] Lemma 2.6). Let m,n ≥ 1, let T be a finite, ≥m2n−1-branching tree with

trunk σ, and let (Pi : i < n) be finite trees such that T ⊆
⋃
i<n Pi. Then there are an i < n and a

≥m-branching tree S ⊆ T with trunk σ such that leaves(S) ⊆ leaves(T ) and S ⊆ Pi.
Proof. By induction on n. The case n = 1 is trivial. Suppose that T is a finite, ≥m2n-branching
tree with trunk σ such that T ⊆

⋃
i<n+1 Pi. By Lemma 3.2, there is a ≥m2n−1-branching tree

S ⊆ T with trunk σ such that leaves(S) ⊆ leaves(T ) and either S ⊆
⋃
i<n Pi or S ⊆ Pn. If S ⊆ Pn

we are done. If S ⊆
⋃
i<n Pi, then by induction there are an i < n and a ≥m-branching tree S0 ⊆ S

with trunk σ such that leaves(S0) ⊆ leaves(S) ⊆ leaves(T ) and S0 ⊆ Pi as desired. �

4. Low DNR(k, f) functions that avoid DNR(b, h) functions

Consider a countable model M = (N,S) of RCA0 +BΣ0
2 with a proper Σ0

2 cut. Let f ∈ S, n ∈ ω,
~h an n-tuple of elements of S, and ~b an n-tuple of elements of N be such that (∀i < n)(hi ≤T f)
and (∀i < n)(f computes no DNR(bi, hi) function). Our goal is to produce a function g (outside of
S) that is DNR(k, f) for some k ∈ N but is such that that f ⊕ g computes no DNR(bi, hi) function
for any i < n.

In RCA0, define the function K(b, s) by K(b, 0) = 2 and K(b, s+ 1) = K(b, s)2s
2+b+1. Our main

technical result is the following theorem.

Theorem 4.1. Let

• M = (N,S) be a countable model of RCA0 + BΣ0
2 with a proper Σ0

2 cut I;

• n ∈ ω, f ∈ S, ~h an n-tuple of elements of S, and ~b an n-tuple of elements of N be such that
– (∀i < n)(hi ≤T f) and
– (∀i < n)(f computes no DNR(bi, hi) function);

• bmax = max~b;
• k0 ∈ N be such that (∀i ∈ I)(k0 > i);
• k = K(bmax, k0).

Then there is a DNR(k, f) function g such that f ⊕ g is low relative to f and such that f ⊕ g
computes no DNR(bi, hi) function for any i < n.

The conclusion that f ⊕ g is low relative to f in Theorem 4.1 ensures that f ⊕ g preserves BΣ0
2.

Before we continue with the proof of Theorem 4.1, we point out that its simplest case provides
an interesting example concerning recursion theory in models with limited induction.

Corollary 4.2. If N satisfies BΣ0
2 but not IΣ0

2, then there is a k ∈ N and a k-bounded diagonally
non-recursive function that computes no 2-bounded diagonally non-recursive function.

In their proof of [1] Theorem 2.1, Ambos-Spies et al. construct a diagonally non-recursive function
g : ω → ω (with necessarily unbounded range) that computes no 2-bounded diagonally non-recursive
function. In fact, given a recursive h, they construct a diagonally non-recursive g that computes
no h-bounded diagonally non-recursive function. Our proof of Theorem 4.1 is essentially the proof
of [1] Theorem 2.1 implemented inside of a Σ0

2 cut as provided by Lemma 2.2. With this strategy,
the Ambos-Spies et al. construction is completed in a bounded number of steps, thereby producing
a diagonally non-recursive function g with bounded range that does not compute a 2-bounded
diagonally non-recursive function.

We build a function g satisfying the conclusion of Theorem 4.1 in a sequence of finite extensions.
Throughout the construction, we maintain a coded finite set D of divergent computations according
to the following definition. Fix k as in the statement of Theorem 4.1. Henceforth and through the
proof of Theorem 4.1, all strings are elements of k<N and all trees are subtrees of k<N.
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Definition 4.3. Let f : N→ N be a function.

• A string σ admits ≥m-branching f -convergence for 〈e, x〉 if there is a finite ≥m-branching

tree T with trunk σ such that (∀α ∈ leaves(T ))(Φf⊕α
e (x)↓).

• A string σ forces ≥m-branching f -divergence for 〈e, x〉 if σ does not admit ≥m-branching
f -convergence for 〈e, x〉.
• Let D be a finite coded subset of N. A string σ forces ≥m-branching f -divergence for D if
σ forces ≥m-branching f -divergence for every 〈e, x〉 ∈ D.

The following lemma is essentially Lemma 2.8 in [1].

Lemma 4.4 (RCA0; see [1] Lemma 2.8). Suppose σ is a string and D is a finite coded set such

that σ forces ≥m-branching f -divergence for D, where m2|D| < k. Then every ≥m2|D|-branching
tree with trunk σ has a leaf that forces ≥m-branching f -divergence for D.

Proof. Suppose σ forces ≥m-branching f -divergence for D, suppose T is a finite ≥m2|D|-branching
tree with trunk σ, and suppose for a contradiction that no leaf of T forces ≥ m-branching f -
divergence for D. Enumerate D as D = {〈ei, xi〉 : i < |D|}, and, using bounded Σ0

1 comprehension,
define a function j : leaves(T ) → |D| by letting j(α) be least such that α admits ≥m-branching
f -convergence for 〈ej(α), xj(α)〉. For each i < |D|, let Pi be the tree consisting of the strings in T
extendible to an α ∈ leaves(T ) with j(α) = i. Then T ⊆

⋃
i<|D| Pi, so by Lemma 3.3 there is a

tree T ′ ⊆ T that has trunk σ, is ≥m-branching, and is contained Pi for some i < |D|. For each

α ∈ leaves(T ′), let Tα be a ≥m-branching tree with trunk α such that (∀β ∈ leaves(Tα))(Φf⊕β
ei (xi)↓

). Then T ′ ∪
⋃
α∈leaves(T ′) Tα witnesses that σ admits ≥m-branching f -convergence for 〈ei, xi〉, a

contradiction. �

The construction proceeds in stages. In stages s ≡ 0 mod n+2, we satisfy requirements ensuring
that g is total. In stages s ≡ i + 1 mod n + 2 for i < n, we satisfy blocks of requirements
ensuring that f ⊕ g computes no DNR(bi, hi) function. In stages s ≡ n + 1 mod n + 2, we
satisfy blocks of requirements ensuring that f ⊕ g is low relative to f . In the end, g satisfies
ran(g) ⊆ k because we only consider extensions by strings σ ∈ k<N, and g is diagonally non-

recursive relative to f because we ensure the divergence of Φf⊕g
e0 (e0), where e0 is an index such that

(Φf⊕g
e0 (e0) ↓) ↔ ∃e(g(e) = Φf

e (e)). To make the non-DNR(bi, hi) requirements more manageable,
we condense a block of non-DNR(bi, hi) requirements into a single requirement.

Definition 4.5. Let b ∈ N, let f : N→ b, and let h : N→ N. We say that f is eventually DNR(b, h)
if ∃n(∀e > n)(f(e) 6= Φh

e (e)).

Define a primitive recursive function d : N3 → N such that, given functions h ≤T f , an index e

such that ∀x(Φf
e (x) = Φh

x(x)), and bounds a and b, d(e, a, b) is an index for a program such that,

for every ` ∈ N and function g, Φf⊕g
d(e,a,b)(`) searches for a pair 〈i, s〉 such that i < a, Φf⊕g

i,s (`) < b,

and ¬(∃`0 < `)(Φf⊕g
i,` (`0) = Φh

`0,`
(`0)). If such a pair is found, then Φf⊕g

d(e,a,b)(`) = Φf⊕g
i,s (`) for the

first such pair. Otherwise, Φf⊕g
d(e,a,b)(`)↑.

Lemma 4.6 (RCA0). For any functions f , g, h and e, a, b ∈ N as above, if there is an i < a such

that Φf⊕g
i is DNR(b, h), then Φf⊕g

d(e,a,b) is eventually DNR(b, h).

Proof. The fact that Φf⊕g
i is DNR(b, h) for some i < a ensures that Φf⊕g

d(e,a,b) is total. The finite set

X = {j < a : ∃`, s(Φf⊕g
j,s (`) = Φh

`,s(`))} exists by bounded Σ0
1 comprehension. BΣ0

1 then provides

a bound N such that (∀j ∈ X)(∃`, s < N)(Φf⊕g
j,s (`) = Φh

`,s(`)). To show that Φf⊕g
d(e,a,b) is eventually

DNR(b, h), we show that (∀` > N)(Φf⊕g
d(e,a,b)(`) 6= Φh

` (`)). Suppose for a contradiction that ` > N
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and that Φf⊕g
d(e,a,b)(`) = Φh

` (`). By the definition of d(e, a, b), there is a j < a such that Φf⊕g
d(e,a,b)(`) =

Φf⊕g
j (`) and ¬(∃`0 < `)(Φf⊕g

j,` (`0) = Φh
`0,`

(`0)). The equation Φf⊕g
j (`) = Φf⊕g

d(e,a,b)(`) = Φh
` (`) implies

that j ∈ X and hence that there are `0, s < N such that Φf⊕g
j,s (`0) = Φh

`0,s
(`0). Now, N < ` and

therefore (∃`0 < `)(Φf⊕g
j,` (`0) = Φh

`0,`
(`0)), a contradiction. �

Lemma 4.7 and Lemma 4.8 below aid the construction of a function witnessing Theorem 4.1.
Their proofs are straightforward if one assumes IΣ0

2. The more complicated arguments below are
necessary for our purposes because they are compatible with BΣ0

2 + ¬IΣ0
2.

Lemma 4.7 (RCA0 + BΣ0
2). Let f and h be functions and let b ∈ N be such that f computes no

DNR(b, h) function. Let σ be a string, let D be a finite coded set, and let m ∈ N be such that σ

forces ≥m-branching f -divergence for D, where m2|D|+b < k. Then for every finite coded set E
there are a string σ′ ⊇ σ and a finite coded set D′ ⊇ D such that

(i) |D′| ≤ |D|+ |E|,
(ii) σ′ forces ≥m2|D|+b-branching f -divergence for D′, and

(iii) for each e ∈ E, (∃` > |σ|)(Φf⊕σ′
e (`) ≥ b), (∃` > |σ|)(Φf⊕σ′

e (`) = Φh
` (`)), or ∃`(〈e, `〉 ∈ D′).

Proof. We prove the lemma in WKL0+BΣ0
2, which suffices because WKL0+BΣ0

2 is Π1
1-conservative

over RCA0 + BΣ0
2 (see [18] or adapt the proof of [27] Corollary IX.2.6). We thus construct an

infinite tree T with trunk σ such that every infinite path through T has an initial segment σ′ and
a corresponding set D′ that satisfy the conclusion of the lemma.

The tree T grows in stages (Ts : s ∈ N). In order to describe the growth of T , we represent Ts as
Ts =

⋃
τ∈Rs

Ts(τ), where Rs ⊆ k<N is finite and, for each τ ∈ Rs, Ts(τ) is the tree τak<t for some
t ∈ N. Notice that Ts(τ) has trunk τ . As the construction proceeds, the component trees Ts(τ) are
either alive, in which case they are extended, or dead, in which case they are not extended. If Ts(τ)
is dead, then no string that is a proper extension of a leaf of Ts(τ) is ever added to T . During the
course of the construction, a component tree Ts(τ) may be rewritten as a union of new component
trees

⋃
η∈leaves(Ts(τ)) Ts+1(η), where Ts+1(η) = η for each η ∈ leaves(Ts(τ)), to allow the branches

of Ts(τ) to grow according to different criteria. In this situation, when we update Rs to Rs+1, we
remove τ and add the elements of leaves(Ts(τ)). To each τ ∈ Rs we also associate a finite set M(τ)
of requirements that have been met.

At stage 0, let R0 = {σ}, T0(σ) = σ, and M(σ) = ∅. T0(σ) is alive at stage 0.
At the beginning of stage s + 1, we have Ts represented as Ts =

⋃
τ∈Rs

Ts(τ), and we have the
corresponding sequence of met requirements (M(τ) : τ ∈ Rs). For each τ ∈ Rs do the following:

(a) If Ts(τ) is dead, put τ in Rs+1 and let Ts+1(τ) = Ts(τ). Ts+1(τ) is dead.
(b) If Ts(τ) is alive:

(i) If there are a t ≤ s, a τ ′ ∈ Rt with τ ′ ⊆ τ , an 〈e, x〉 ∈ D, and a ≥m-branching tree

S ⊆ k<s with trunk τ ′ such that (∀α ∈ leaves(S))(Φf⊕α
e (x)↓) (i.e., we learn at stage s

that τ ′ admits ≥m-branching f -convergence for some 〈e, x〉 ∈ D), then put τ in Rs+1

and let Ts+1(τ) = Ts(τ). Ts+1(τ) is dead.

(ii) If (i) fails and there are an e ∈ E\M(τ), an x with |σ| < x ≤ s, and a≥m2|D|-branching

tree S ⊆ Ts(τ) with trunk τ such that either (∀α ∈ leaves(S))(Φf⊕α
e (x) = Φh

x,s(x)) or

(∀α ∈ leaves(S))(Φf⊕α
e (x) ≥ b), then choose the least such e, the least such x for the

chosen e, and the least such S for the chosen e and x. Put all leaves of Ts(τ) in Rs+1.
Let Ts+1(η) = η and M(η) = M(τ)∪ {e} for all η ∈ leaves(Ts(τ)). If η ∈ leaves(Ts(τ))
extends a leaf of S, then Ts+1(η) is alive; otherwise Ts+1(η) is dead.

(iii) If (i) and (ii) fail, then put τ in Rs+1 and let Ts+1(τ) = Ts(τ). Ts+1(τ) is alive.

Finally, for each τ ∈ Rs+1 with Ts+1(τ) alive, grow Ts+1(τ) by extending each α ∈ leaves(Ts+1(τ))
to αan for every n < k. This concludes stage s+ 1.
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The tree T is an (f ⊕ h)-recursive subtree of k<N because every α ∈ k<N is either in Ts(τ) for
some τ in some Rs or properly extends some leaf of Ts(τ) for some τ in some Rs where Ts(τ) is
dead.

Claim. T is infinite.

Proof of Claim. We prove that at the end of every stage s there is some τ ∈ Rs such that Ts(τ) is
alive. Ts(τ) thus grows at the end of stage s, and therefore new strings are added to T at every
stage. Hence T is infinite.

For each s, let Qs be the tree of strings extendible to a τ ∈ Rs such that either Ts(τ) is alive or

Ts(τ) died by item (b) part (i) at some stage ≤ s. IΣ0
1 suffices to prove that each Qs is ≥m2|D|-

branching with trunk σ. This is because a τ ∈ leaves(Qs) is extended in Qs+1 only by the result
of acting according to item (b) part (ii) for τ at stage s + 1, in which case the subtree of Ts(τ)

consisting of strings extendible to an η ∈ leaves(Ts(τ)) with Ts+1(η) alive is ≥ m2|D|-branching

with trunk τ . Thus in Qs+1, τ is appended by a ≥m2|D|-branching tree.
Suppose for a contradiction that, at some stage s, Ts(τ) is dead for all τ ∈ Rs. Thus each Ts(τ)

for τ ∈ leaves(Qs) died by item (b) part (i) at some stage ≤ s. For each τ ∈ leaves(Qs), let τ ′ ⊆ τ
be such that τ ′ admits ≥m-branching f -convergence for some 〈e, x〉 ∈ D as in item (b) part (i) at
the time of Ts(τ)’s death. Let R = {τ ′ : (τ ∈ leaves(Qs)) ∧ ¬(∃η ∈ leaves(Qs))(η

′ ⊂ τ ′)}. Let S be

the tree of strings extendible to some τ ′ ∈ R. S is ≥m2|D|-branching with trunk σ, but no leaf of
S forces ≥m-branching f -divergence for D. This contradicts Lemma 4.4. �

By WKL0, let p be an infinite path through T . Using bounded Σ0
1 comprehension, let s ∈ N and

σ′ ⊂ p maximize |M(σ′)| over all s ∈ N and σ′ ∈ Rs with σ′ ⊂ p. Observe that the construction
never acts on Tt(σ

′) according to item (b) part (i) or item (b) part (ii) at any stage t > s. If the
construction acts at stage t > s according to item (b) part (i), then Tt(σ

′) dies and p could not be
a path through T . If the construction acts at stage t+ 1 > s according to item (b) part (ii), then p
must extend some η ∈ leaves(Tt(σ

′)) with Tt+1(η) alive, and |M(η)| > |M(σ′)| for all such η. This
contradicts the choice of σ′ and s. It follows that σ′ ∈ Rt for all stages t ≥ s.

To find D′, we define a `e,t ∈ N for every e ∈ E \M(σ′) and every t > s as follows. Let `e,t be

least > |σ| such that no tree S ⊆ Tt(σ′) with trunk σ′ witnesses that σ′ admits ≥m2|D|+b-branching
f -convergence for 〈e, `e,t〉.

Claim. (∀e ∈ E \M(σ′))(∃t > s)(∀t′ > t)(`e,t′ = `e,t).

Proof of Claim. Let e ∈ E \M(σ′). The numbers `e,t are increasing in t, so if (∃t)(∀t′ > t)(`e,t′ =
`e,t) fails, then it must be that limt→∞ `e,t =∞. Thus suppose for a contradiction that limt→∞ `e,t =
∞. We then compute an eventually DNR(b, h) function from f , contradicting the hypothesis that
f computes no DNR(b, h) function and hence no eventually DNR(b, h) function.

Given x ∈ N, if x ≤ |σ| then output 0. If x > |σ|, run the construction to a stage t > s

such that t, `e,t > x and there are an i < b and a ≥m2|D|-branching tree S ⊆ Tt(σ
′) such that

(∀α ∈ leaves(S))(Φf⊕α
e (x) = i). Then output the least such i. This procedure describes a b-

valued partial f -recursive function Φf . To see that Φf (x) converges for x > |σ|, observe that
there is a t > s, x such that `e,t > x because limt→∞ `e,t = ∞ and that at such a stage t, by
the definition of `e,t, there must be a tree S′ ⊆ Tt(σ

′) with trunk σ′ witnessing that σ′ admits

≥m2|D|+b-branching f -convergence for 〈e, x〉. For each i < b, let Pi be the tree consisting of the

strings in S′ that are extendible to an α ∈ leaves(S′) such that Φf⊕α
e (x) = i, and let Pb be the

tree consisting of the strings in S′ that are extendible to an α ∈ leaves(S′) such that Φf⊕α
e (x) ≥ b.

Then S′ ⊆
⋃
i<b+1 Pi, so by Lemma 3.3 there is a ≥m2|D|-branching tree S ⊆ S′ with trunk σ′

such that S ⊆ Pi for some i < b + 1. If S ⊆ Pb, then the construction would have acted on
Tt′(σ

′) according to item (b) part (ii) at some stage t′ > s, contradicting the choice of s. Thus
S ⊆ Pi for some i < b. Thus there are indeed a stage t > s with t, `e,t > x, an i < b, and a
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≥m2|D|-branching tree S ⊆ Tt(σ
′) such that (∀α ∈ leaves(S))(Φf⊕α

e (x) = i). So Φf is total. To
see that Φf (x) 6= Φh

x(x) for all x > |σ|, suppose for a contradiction that x > |σ| is such that

Φf (x) = Φh
x(x). By the definition of Φf (x), there are a stage t > s and a ≥m2|D|-branching tree

S ⊆ Tt(σ′) such that (∀α ∈ leaves(S))(Φf⊕α
e (x) = Φh

x(x)). Then the construction would have acted
on Tt′(σ

′) according to item (b) part (ii) at some stage t′ > s, contradicting the choice of s. Thus
Φf is eventually DNR(b, h), contradicting that f computes no such function. Therefore we cannot
have limt→∞ `e,t =∞, hence (∃t)(∀t′ > t)(`e,t′ = `e,t) as desired. �

Applying BΣ0
2 to the claim, we have that, in fact, (∃t0 > s)(∀e ∈ E\M(σ′))(∀t′ > t0)(`e,t′ = `e,t0).

For each e ∈ E \M(σ′), let `e = `e,t0 . Then let D′ = D ∪ {〈e, `e〉 : e ∈ E \M(σ′)}. We show that
σ′ and D′ satisfy the conclusion of the lemma. The inequality |D′| ≤ |D|+ |E| is clear.

First, σ′ forces ≥m-branching f -divergence (and hence ≥m2|D|+b-branching f -divergence) for
D, otherwise the construction would act according to item (b) part (i) at some stage past s. To see

that σ′ forces ≥m2|D|+b-branching f -divergence for each of the 〈e, `e〉 with e ∈ E \M(σ′), suppose
not and let 〈e, `e〉, with e ∈ E \M(σ′), and S, a tree with trunk σ′, be such that S witnesses that

σ′ admits ≥m2|D|+b-branching f -convergence for 〈e, `e〉. As the construction never acts on Tt(σ
′)

for t > s, there is a stage t > t0 with S ⊆ Tt(σ
′). Thus at stage t + 1 there is a tree S ⊆ Tt(σ

′)

with trunk σ′ witnessing that σ′ admits ≥m2|D|+b-branching f -convergence for 〈e, `e〉 = 〈e, `e,t〉,
contradicting the choice of `e,t.

Finally, we show that, for each e ∈ E, either (∃` > |σ|)(Φf⊕σ′
e (`) ≥ b), (∃` > |σ|)(Φf⊕σ′

e (`) =
Φh
` (`)), or ∃`(〈e, `〉 ∈ D′). By the definition of D′, if e ∈ E \ M(σ′) then there is an ` such

that 〈e, `〉 ∈ D′. Thus we need to show that if e ∈ M(σ′) then either (∃` > |σ|)(Φf⊕σ′
e (`) ≥ b)

or (∃` > |σ|)(Φf⊕σ′
e (`) = Φh

` (`)). Suppose that e ∈ M(σ′), and let t + 1 ≤ s be least such that
e ∈M(η) for some η ⊆ σ′ with η ∈ Rt+1. Then e entered M(η) at stage t+1 by an action according
to item (b) part (ii). Thus at stage t + 1 there must have been a τ ∈ Rt with η ∈ leaves(Tt(τ))

and a least x with |σ| < x ≤ t having a least ≥m2|D|-branching tree S ⊆ Tt(τ) with trunk τ such

that either (∀α ∈ leaves(S))(Φf⊕α
e (x) = Φh

x,t(x)) or (∀α ∈ leaves(S))(Φf⊕α
e (x) ≥ b). Moreover, η

must extend a leaf of S because Tt+1(η) must be alive because η is an initial segment of a path

through T . So if (∀α ∈ leaves(S))(Φf⊕α
e (x) = Φh

x,t(x)), then (∃` > |σ|)(Φf⊕σ′
e (`) = Φh

` (`)), and if

(∀α ∈ leaves(S))(Φf⊕α
e (x) ≥ b) then (∃` > |σ|)(Φf⊕σ′

e (`) ≥ b). �

Lemma 4.8 (RCA0). Let f be a function, let σ be a string, and let D be a finite coded set such

that σ forces ≥m-branching f -divergence for D, where m2|D| < k. Then for every finite coded set

E there is a string σ′ ⊇ σ with the following property. Let E′ = {e ∈ E : Φf⊕σ′
e (e) ↑}, and let e′

be an index for a program such that, for any function g, (Φg
e′(e
′)↓)↔ (∃e ∈ E′)(Φg

e(e)↓). Then σ′

forces ≥m2|D|-branching f -divergence for D ∪ {〈e′, e′〉}.

Proof. The proof is similar to that of Lemma 4.7. We prove the lemma in WKL0, which suffices
because WKL0 is Π1

1-conservative over RCA0 (see [27] Corollary IX.2.7). Thus we construct an
infinite tree T with trunk σ such that every infinite path through T has an initial segment σ′ that
satisfies the conclusion of the lemma.

As in Lemma 4.7, T grows in stages (Ts : s ∈ N), where Ts =
⋃
τ∈Rs

Ts(τ) and, for each τ ∈ Rs,
Ts(τ) is τak<t for some t ∈ N. The component trees are either alive or dead, as before. To every

s ∈ N and τ ∈ Rs we associate the set E(τ) = {e ∈ E : Φf⊕τ
e (e) ↑} and the index e(τ), where

(Φg
e(τ)(e(τ))↓)↔ (∃e ∈ E(τ))(Φg

e(e)↓).
At stage 0, let R0 = {σ} and T0(σ) = σ. T0(σ) is alive at stage 0.
At the beginning of stage s + 1 we have Ts represented as Ts =

⋃
τ∈Rs

Ts(τ), and we have the
corresponding auxiliary information (E(τ) : τ ∈ Rs) and (e(τ) : τ ∈ Rs). For each τ ∈ Rs do the
following:
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(a) If Ts(τ) is dead, put τ in Rs+1 and let Ts+1(τ) = Ts(τ). Ts+1(τ) is dead.
(b) If Ts(τ) is alive:

(i) If there are a t ≤ s, a τ ′ ∈ Rt with τ ′ ⊆ τ , an 〈e, x〉 ∈ D, and a ≥m-branching tree

S ⊆ k<s with trunk τ ′ such that (∀α ∈ leaves(S))(Φf⊕α
e (x)↓) (i.e., we learn at stage s

that τ ′ admits ≥m-branching f -convergence for 〈e, x〉 ∈ D), then put τ in Rs+1 and
let Ts+1(τ) = Ts(τ). Ts+1(τ) is dead.

(ii) If (i) fails and there is a ≥m2|D|-branching tree S ⊆ Ts(τ) with trunk τ such that

(∀α ∈ leaves(S))(Φf⊕α
e(τ) (e(τ))↓), then choose the first such S. Put all leaves of Ts(τ) in

Rs+1, and let Ts+1(η) = η for all η ∈ leaves(Ts(τ)). If η ∈ leaves(Ts(τ)) extends a leaf
of S, then Ts+1(η) is alive; otherwise Ts+1(η) is dead.

(iii) If (i) and (ii) fail, then put τ in Rs+1 and let Ts+1(τ) = Ts(τ). Ts+1(τ) is alive.

Finally, for each τ ∈ Rs+1 with Ts+1(τ) alive, grow Ts+1(τ) by extending each α ∈ leaves(Ts+1(τ))
to αan for every n < k. This concludes stage s+ 1.

The tree T is an infinite f -recursive subtree of k<N by arguments similar to those in the proof
of Lemma 4.7. By WKL0, let p be an infinite path through T . Using bounded Σ0

1 comprehension,
let s ∈ N and σ′ ⊂ p minimize |E(σ′)| over all s ∈ N and σ′ ∈ Rs with σ′ ⊂ p. Then σ′ satisfies the
conclusion of the lemma. Note that the corresponding e′ is e(σ′). As in the proof of Lemma 4.7,
the construction never acts on Tt(σ

′) according to item (b) part (i) or item (b) part (ii) at any

stage t > s. Consequently, σ′ forces ≥m-branching f -divergence (and hence ≥m2|D|-branching
f -divergence) for D because otherwise the construction would act according to item (b) part (i) at

some stage past s. Similarly, σ′ forces ≥m2|D|-branching f -divergence for 〈e′, e′〉 = 〈e(σ′), e(σ′)〉
because otherwise the construction would act on Tt(σ

′) according to item (b) part (ii) at some stage

t > s. Thus σ′ forces ≥m2|D|-branching f -divergence for D ∪ {〈e′, e′〉}. �

Proof of Theorem 4.1. Let M , I, n, f , ~h, ~b, bmax, k0, and k be as in the statement of Theorem 4.1.

For each i < n, fix an index wi such that ∀x(Φf
wi(x) = Φhi

x (x)). The proof of Lemma 2.2 shows
that there is an increasing, cofinal function c : I → N whose graph is ∆0

2.
We build a ∆0

2(f) sequence (〈σs, Ds〉 : s ∈ J) in stages, where J ⊆ I is a Σ0
2(f) cut determined

during the course of the construction. In the end, we set g =
⋃
s∈J σs. Let e0 be an index such that,

for any g and x, (Φf⊕g
e0 (x)↓)↔ ∃e(g(e) = Φf

e (e)). At stage 0, set σ0 = ∅ and set D0 = {〈e0, e0〉}.
• At stage s + 1 ≡ 0 mod n + 2, search for the least σs+1 ⊇ σs such that |σs+1| >

max{c(s), Ds} (where here Ds is interpreted as the number coding the set Ds) and that
σs+1 forces ≥K(bmax, s+ 1)-branching f -divergence for Ds. Let Ds+1 = Ds.
• At stage s + 1 ≡ i + 1 mod n + 2 for an i < n, search for the least pair 〈σ′, D′〉 as in the

conclusion of Lemma 4.7 for f , h = hi, b = bi, σ = σs, D = Ds, m = K(bmax, s), and
E = {d(wi, |σt|, bi) : t ≤ s}. Let σs+1 = σ′ and let Ds+1 = D′.
• At stage s+ 1 ≡ n+ 1 mod n+ 2, search for the least σ′ as in the conclusion of Lemma 4.8

for f , σ = σs, D = Ds, m = K(bmax, s), and E = {t : t ≤ |σs|}. Let σs+1 = σ′ and let
Ds+1 = D ∪ {〈e′, e′〉}.

Let J be the set of s ∈ N such that the construction reaches stage s. That is, J is the set of
s ∈ N for which there is a sequence (〈σj , Dj〉 : j ≤ s) where σ0 = ∅, D0 = {〈e0, e0〉}, and, for
all j < s, 〈σj+1, Dj+1〉 follows from 〈σj , Dj〉 according to the rules of the construction. Checking
whether 〈σj+1, Dj+1〉 follows from 〈σj , Dj〉 is ∆0

2(f), so J is Σ0
2(f).

Clearly J is downward closed. To see J ⊆ I, let s ∈ J and let n0 < n+ 2 be such that s−n0 ≡ 0
mod n+ 2. Then s− n0 must be in I because c(s− n0) must be defined in order for s− n0 to be
in J . Hence s ∈ I because I is a cut and n0 ∈ ω.

Notice that at stage s + 1 at most s + 1 elements are added to Ds+1. Therefore, for all s ∈ J ,
|Ds| ≤ 1 +

∑
j≤s j = 1

2(s2 + s) + 1 ≤ s2 + 1 (the ‘+1’ is because |D0| = 1, not |D0| = 0).
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Claim. If s ∈ J , then σs forces ≥K(bmax, s)-branching f -divergence for Ds.

Proof of Claim. Let (〈σj , Dj〉 : j ≤ s) be a witness to s ∈ J . We prove the claim by Π0
1 induction

on j ≤ s. To see that σ0 = ∅ forces ≥ 2-branching f -divergence for D0 = {〈e0, e0〉}, consider a
≥2-branching tree T with trunk ∅. Let t be the height of T , and, by bounded Σ0

1 comprehension,

let X = {e < t : Φf
e (e) ↓}. As T is ≥ 2-branching, we can find an α ∈ leaves(T ) such that

(∀e ∈ X)(α(e) 6= Φf
e (e)). Then Φf⊕α

e0 (e0) ↑, showing that T does not witness that ∅ admits ≥ 2-
branching f -convergence for 〈e0, e0〉, as desired.

Now suppose that j < s and that σj forces ≥K(bmax, j)-branching f -divergence for Dj .

• If j + 1 ≡ 0 mod n+ 2, then σj+1 forces ≥K(bmax, j + 1)-branching f -divergence for Dj+1

by definition.
• If j + 1 ≡ i + 1 mod n + 2 for an i < n, then σj+1 forces ≥K(bmax, j)2

|Dj |+bi-branching
f -divergence for Dj+1 by definition (refer to the statement of Lemma 4.7). As |Dj |+ bi ≤
j2 + bmax + 1, σj+1 forces ≥K(bmax, j + 1)-branching f -divergence for Dj+1.

• If j + 1 ≡ n+ 1 mod n+ 2, then σj+1 forces ≥K(bmax, j)2
|Dj |-branching f -divergence for

Dj+1 by definition (refer to the statement of Lemma 4.8). As |Dj | ≤ j2 + bmax + 1, σj+1

forces ≥K(bmax, j + 1)-branching f -divergence for Dj+1.

�

Claim. J is a cut.

Proof of Claim. We have seen that J is downward closed. We need to show that ∀s(s ∈ J → s+1 ∈
J). So suppose s ∈ J . By the previous claim, σs forces ≥K(bmax, s)-branching f -divergence for
Ds.

• If s + 1 ≡ 0 mod n + 2, then consider the tree σs
aK(bmax, s + 1)<max{c(s),Ds}. It is

≥ K(bmax, s)2
|Ds|-branching with trunk σs, so by Lemma 4.4 it has a leaf that forces

≥ K(bmax, s)-branching f -divergence for Ds, and this leaf also forces ≥ K(bmax, s + 1)-
branching f -divergence for Ds. Thus σs+1 and Ds+1 are defined.
• If s+ 1 ≡ i+ 1 mod n+ 2 for an i < n, then Lemma 4.7 applies. The previous claim and

the inequality K(bmax, s)2
|Ds|+b < k show that the hypotheses of Lemma 4.7 are satisfied,

where K(bmax, s)2
|Ds|+b < k because

K(bmax, s)2
|Ds|+b ≤ K(bmax, s)2

s2+b+1 = K(bmax, s+ 1) < K(bmax, k0) = k,

with the strict inequality holding because s + 1 ∈ I and therefore s + 1 < k0. Thus σs+1

and Ds+1 are defined.
• If s+ 1 ≡ n+ 1 mod n+ 2, then Lemma 4.8 applies by an argument similar to the one in

the previous item. Thus σs+1 and Ds+1 are defined.

�

Claim. The function g is total.

Proof of Claim. If g is not total, then there is a t ∈ N such that (∀s ∈ J)(|σs| < t ∧Ds < t). By
increasing t, we may assume that if s ∈ J then σs < t (i.e., σs is coded by a number < t). Thus
s ∈ J if and only if there is a sequence (〈σj , Dj〉 : j ≤ s) ≤ 〈t, t〉s+1 (i.e., the sequence of s + 1
copies of 〈t, t〉), where σ0 = ∅, D0 = 〈e0, e0〉, and, for all j < s, 〈σj+1, Dj+1〉 follows from 〈σj , Dj〉
according to the rules of the construction. This shows that J is ∆0

2(f), which is a contradiction
because by BΣ0

2 there are no ∆0
2(f) cuts. �

Claim. The function g is DNR(k, f).

Proof of Claim. The function g has range contained in k by the convention that all trees are subtrees

of k<N. Suppose for a contradiction that ∃e(g(e) = Φf
e (e)). Then Φf⊕g

e0 (e0)↓, so there is an initial
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segment σ ⊂ g such that Φf⊕σ
e0 (e0)↓. Let s be a stage with σs ⊇ σ. Then Φf⊕σs

e0 (e0)↓, but this is a
contradiction because 〈e0, e0〉 ∈ Ds and σs forces ≥K(bmax, s)-branching f -divergence for Ds. �

Claim. f ⊕ g is low relative to f .

Proof of Claim. To determine whether or not Φf⊕g
e (e) ↓, run the construction to a stage s with

s + 1 ≡ n + 1 mod n + 2 and |σs| > e. Then Φf⊕g
e (e) ↓ if and only if Φ

f⊕σs+1
e (e) ↓. Since the

sequence (〈σs, Ds〉 : s ∈ J) is ∆0
2(f), it then follows that f ⊕ g is low relative to f . Clearly

(Φ
f⊕σs+1
e (e) ↓) → (Φf⊕g

e (e) ↓). To see (Φ
f⊕σs+1
e (e) ↑) → (Φf⊕g

e (e) ↑), suppose for a contradiction

that Φ
f⊕σs+1
e (e) ↑ but Φf⊕g

e (e) ↓. Let 〈e′, e′〉 be the element added to Ds+1 at stage s + 1. Then

Φf⊕g
e′ (e′) ↓ because e is in E′ (where E′ is as in Lemma 4.8) and Φf⊕g

e (e) ↓. Let r > s be a stage

such that Φf⊕σr
e′ (e′)↓. Clearly σr admits ≥K(bmax, r)-branching f -convergence for 〈e′, e′〉, but this

contradicts that 〈e′, e′〉 ∈ Dr and σr forces ≥K(bmax, r)-branching f -divergence for Dr. �

Claim. For each i < n, the function f ⊕ g computes no DNR(bi, hi) function.

Proof of Claim. Suppose for a contradiction that Φf⊕g
e is DNR(bi, hi). Fix a stage t such that

|σt| > e. By the previous claim, BΣ0
2 and hence IΣ0

1 holds relative to f ⊕ g. Thus Lemma 4.6

applies to f ⊕ g, so Φf⊕g
d(wi,|σt|,bi) is eventually DNR(bi, hi). We show that in fact Φf⊕g

d(wi,|σt|,bi) is

not eventually DNR(bi, hi), giving the contradiction. Fix `0. We want to find an ` > `0 such

that Φf⊕g
d(wi,|σt|,bi)(`) ≥ bi or Φf⊕g

d(wi,|σt|,bi)(`) = Φhi
` (`). Let s + 1 > t be a stage with s + 1 ≡ i + 1

mod n + 2 and |σs| > `0. At stage s + 1, σs+1 and Ds+1 are defined to be as in the conclusion of

Lemma 4.7 for an E with d(wi, |σt|, bi) ∈ E. The result is that (∃` > |σs|)(Φf⊕σs+1

d(wi,|σt|,bi)(`) ≥ bi),

(∃` > |σs|)(Φf⊕σs+1

d(wi,|σt|,bi)(`) = Φhi
` (`)), or ∃`(〈d(wi, |σt|, bi), `〉 ∈ Ds+1). If either of the first two

alternatives hold, then we have our ` > `0 such that Φf⊕g
d(wi,|σt|,bi)(`) ≥ bi or Φf⊕g

d(wi,|σt|,bi)(`) =

Φhi
` (`). If the third alternative holds, then Φf⊕g

d(wi,|σt|,bi)(`) ↑, again contradicting that Φf⊕g
d(wi,|σt|,bi)

is eventually DNR(bi, hi). To see that Φf⊕g
d(wi,|σt|,bi)(`) ↑, suppose instead that Φf⊕g

d(wi,|σt|,bi)(`) ↓ and

let r > s + 1 be a stage such that Φf⊕σr
d(wi,|σt|,bi)(`) ↓. Clearly σr admits ≥ K(bmax, r)-branching

f -convergence for 〈d(wi, |σt|, bi), `〉, but this contradicts that 〈d(wi, |σt|, bi), `〉 ∈ Dr and σr forces
≥K(bmax, r)-branching f -divergence for Dr. �

This concludes the proof of Theorem 4.1. �

Theorem 4.9. RCA0 + BΣ0
2 + ∀f∃kDNR(k, f) 0 ∃k∀fDNR(k, f).

Proof. We build a model of RCA0 + BΣ0
2 + ∀f∃kDNR(k, f) +¬∃k∀fDNR(k, f) by iterating Theo-

rem 4.1.
Let N be a countable first-order model of BΣ0

2 + ¬IΣ0
2. By Lemma 2.2, let I be a proper Σ0

2 cut
in N. Fix k0 ∈ N such that (∀i ∈ I)(k0 > i).

Fix an increasing, cofinal sequence (bm : m ∈ ω) of numbers in N. We define a sequence
(fm : m ∈ ω) of functions N→ N such that, for all m ∈ ω,

(i) fm ≤T fm+1;
(ii) (N,∆0

1(fm)) |= RCA0 + BΣ0
2;

(iii) no h ≤T fm is DNR(bm0 , fm0) for any m0 ≤ m;
(iv) for every h ≤T fm, there are a k ∈ N and a g ≤T fm+1 that is DNR(k, h).

Let f0 = 0. The function f0 is ∆0
1, so items (ii) and (iii) hold for m = 0, with item (ii) holding

because N |= BΣ0
2. Suppose now that (fj : j < m + 1) satisfies items (i) and (iv) for all j < m

and satisfies items (ii) and (iii) for all j < m+ 1. Then M = (N,∆0
1(fm)), I, n = m+ 1, f = fm,

~h = (fj : j < m + 1), ~b = (bj : j < m + 1), and k = K(bmax, k0) satisfy the hypotheses of
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Theorem 4.1. Thus let g be as in the conclusion of Theorem 4.1, and let fm+1 = fm ⊕ g. Then
item (i) holds for m and items (ii) and (iii) hold for m+ 1, with item (ii) holding because fm+1 is
low relative to fm. Item (iv) holds for m because g ≤T fm+1 is DNR(k, fm) and hence computes a
DNR(k, h) function for every h ≤T fm.

Let S =
⋃
m∈ω ∆0

1(fm). Then (N,S) models RCA0 + BΣ0
2 +∀f∃kDNR(k, f) +¬∃k∀fDNR(k, f).

BΣ0
2 holds relative to every h ∈ S by item (ii), so (N,S) |= RCA0 + BΣ0

2. We have that (N,S) |=
∀f∃kDNR(k, f) by item (iv). To see that (N,S) 6|= ∃k∀fDNR(k, f), let k ∈ N and let bm0 > k.
Then observe that no h ∈ S is DNR(bm0 , fm0) (hence no h ∈ S is DNR(k, fm0)) by item (iii). �

Theorem 4.10. RCA0 + BΣ0
2 + ∃k∀fDNR(k, f) 0 WKL.

Proof. The proof is a simplification of the proof of Theorem 4.9. We build a model of RCA0 +
BΣ0

2 + ∃k∀fDNR(k, f) +¬∀fDNR(2, f) by iterating Theorem 4.1. As ∀fDNR(2, f) and WKL are
equivalent over RCA0, this also a model of RCA0 + BΣ0

2 + ∃k∀fDNR(k, f) + ¬WKL.
Proceed as in the proof of Theorem 4.9, but fix k = K(2, k0) and ignore the sequence (bm : m ∈

ω). Define a sequence (fm : m ∈ ω) of functions N→ N that satisfy items (i) and (ii) as before and
satisfy the following modified versions of items (iii) and (iv):

(iii’) no h ≤T fm is DNR(2, 0);
(iv’) for every h ≤T fm, there is a g ≤T fm+1 that is DNR(k, h).

Now fm+1 is obtained from fm by applying Theorem 4.1 to M = (N,∆0
1(fm)), I, n = 1, f = fm,

~h = (0), ~b = (2), and k. The witnessing model (N,S) is built from (fm : m ∈ ω) as before. �

Now that we know that the statements ∃k∀fDNR(k, f) and ∀f∃kDNR(k, f) do not imply WKL
even over RCA0 + BΣ0

2, it is natural to ask if either statement implies weak weak König’s lemma.

Question 4.11. Do either ∃k∀fDNR(k, f) or ∀f∃kDNR(k, f) imply WWKL over RCA0 (or over
RCA0 + BΣ0

2)?

5. Observations concerning the connection between diagonally non-recursive
functions and graph colorings

Just as DNR(`, f) trivially implies DNR(k, f) when k ≥ `, so the existence of an `-coloring of a
graph trivially implies the existence of a k-coloring of that graph when k ≥ `. This motivates the
search for a connection between DNR functions and graph colorings. So far, our efforts in this area
have produced more questions than answers.

Definition 5.1 (RCA0). A graph G = (V,E) consists of a set of vertices V ⊆ N and an irreflexive,
symmetric relation E ⊆ V × V which indicates when two vertices are adjacent. Let G be a graph,
and let ` ∈ N.

• An `-coloring of G is a function χ : V → ` such that (∀u, v ∈ V )((u, v) ∈ E → χ(u) 6= χ(v)).
• G is (globally) `-colorable if there is an `-coloring of G.
• G is locally `-colorable if for every finite V0 ⊆ V , the induced subgraph (V0, E ∩ (V0 × V0))

is `-colorable.

Let COL(`, k,G) denote the formal statement that “if the graph G locally `-colorable, then G is
globally k-colorable.” A classic compactness argument shows that a graph is `-colorable if and only
if it is locally `-colorable. In the context of reverse mathematics, the following theorem expresses
that this fact is equivalent to WKL over RCA0.

Theorem 5.2 (see [20] Theorem 3.4).

RCA0 ` (∀` ≥ 2)(WKL↔ ∀GCOL(`, `,G))).
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In [3], Bean gave an example of a recursive 3-colorable graph that has no recursive k-coloring for
any k ∈ ω. This result suggests that coloring a 3-colorable (or more generally `-colorable) graph
with any finite number of colors may also be difficult from the proof-theoretic point of view. To
this end, Gasarch and Hirst proved the following theorem.

Theorem 5.3 ([15] Theorem 3).

RCA0 ` (∀` ≥ 2)(WKL↔ ∀GCOL(`, 2`− 1, G)).

Gasarch and Hirst then conjectured that the (2` − 1) in their theorem can be replaced by any
k ≥ `.
Conjecture 5.4 ([15] Conjecture 4).

RCA0 ` (∀` ≥ 2)(∀k ≥ `)(WKL↔ ∀GCOL(`, k,G)).

In [24], Schmerl verified a weakened version of this conjecture in which ` and k are both fixed
and standard.

Theorem 5.5 ([24] Theorem 1). Fix k, ` ∈ ω with k ≥ ` ≥ 2. Then

RCA0 `WKL↔ ∀GCOL(`, k,G).

Schmerl connected two key ingredients to prove Theorem 5.5. The first ingredient is the on-line
coloring game Γd(K, k), where K is a class of graphs and d, k ∈ N. Γd(K, k) is a game between
two players, ∀ and ∃. Player ∀ builds a graph in K, and Player ∃ k-colors it. The game lasts for
d rounds. In each round, ∀ and ∃ alternate plays as follows. Player ∀ goes first by adding a new
vertex to the graph and connecting it to the existing vertices in such a way that the graph remains
in K. Player ∃ goes second and colors the new vertex with a color from {0, 1, . . . , k − 1}. After
d rounds, ∃ wins if she has produced a k-coloring of the graph enumerated by ∀. We say that
the class K is locally on-line k colorable if for every d ∈ N, ∃ has a winning strategy in Γd(K, k).
(Assuming WKL, it then follows that ∃ has a winning strategy in the unbounded on-line coloring
game Γ(K, k), where the two players continue for as long as ∀ keeps playing new vertices.)

The second ingredient can be found in [25] Lemma 2.3, where Schmerl isolates a recursion-
theoretic principle similar to the negation of DNR(k, f). Fix d ≥ 1, along with a primitive recursive
d-tupling function Nd → N with associated primitive recursive projections p0, . . . , pd−1 : N → N.
Given a function f , define

∆f
i,d(x) =

{
Φf
pi(x)(pi(x)) if Φf

pj(x)(pj(x))↓ for all j ≤ i,
↑ otherwise.

Write Df
i+1,d = dom(∆f

i,d), and set Df
0,d = N.

Definition 5.6. Consider a function f : N→ N and a length d sequence ~g of functions gi : D
f
i,d → N

for i < d.

• The sequence ~g is depth d diagonally non-recursive relative to f (~g is DNRd(f) for short) if

(∀x)(∃i < d)(x ∈ dom(gi) ∧ gi(x) 6= ∆f
i,d(x)).

• The sequence ~g is k-bounded depth d diagonally non-recursive relative to f (~g is DNRd(k, f)
for short) if it is DNRd(f) and each gi is k-bounded.

Overloading notation as we did before, we let DNRd(f) denote the formal statement “there is
a ~g that is DNRd(f),” and we let DNRd(k, f) denote the formal statement “there is a ~g that is
DNRd(k, f).” Although different d-tupling schemes lead to different classes of DNRd(f)-functions,
it is always possible to translate back and forth between any two such schemes. In particular,
the principles DNRd(f) and DNRd(k, f) are unaffected by such choices. We therefore see that
DNR(k, f) is equivalent to DNR1(k, f) and that if c > d then DNRd(k, f) implies DNRc(k, f). A
further relation between these principles is given by the following lemma.
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Lemma 5.7 (RCA0). Let f : N→ N be a function, and let c, d, k ∈ N be positive. Then DNRc(k
d, f)

implies DNRcd(k, f). In particular, DNR(kd, f) implies DNRd(k, f).

Proof. Let ~g be DNRc(k
d, f). We define a sequence ~h that is DNRcd(k, f). Let q0, . . . , qc−1 be the

projections for the c-tupling function, and let p0, . . . , pcd−1 be the projections for the cd-tupling
function. Define a recursive function s : N→ N so that for all i < c and all x, y ∈ N

Φf
qi(s(x))(y) =

∑
j<d

kjΦf
pdi+j(x)(pdi+j(x)).

Now define ~h = (h`)`<cd so that each h` is k-bounded and so that the equation gi(s(x)) =∑
j<d k

jhdi+j(x) holds for each i < c.

We show that Df
i,cd ⊆ dom(hi) for each i < cd, so that we may shrink the domain of each hi

to be exactly Df
i,cd (if necessary). First, observe that by the definition of ~h, if i < c and s(x) ∈

dom(gi) = Df
i,c, then (∀j < d)(x ∈ dom(hdi+j)). Thus we fix i < c, j < d, and x ∈ Df

di+j,cd, and we

show that s(x) ∈ Df
i,c. If i = 0, this follows from the definition Df

0,c = N, so we may assume i > 0.

Now, x ∈ Df
di+j,cd = dom(∆f

di+j−1,cd) ⊆ dom(∆f
di−1,cd) implies that (∀` ≤ di − 1)(Φf

p`(x)(p`(x)) ↓)
and therefore that (∀m ≤ i− 1)(Φf

qm(s(x))(qm(s(x)))↓). Thus s(x) ∈ dom(∆f
i−1,c) = Df

i,c as desired.

Now we show that ~h is indeed depth cd diagonally non-recursive relative to f . Let x ∈ N, and

let i < c be such that s(x) ∈ dom(gi) and gi(s(x)) 6= ∆f
i,c(s(x)). Then (∀j < d)(x ∈ dom(hdi+j))

and gi(s(x)) =
∑

j<d k
jhdi+j(x). Thus if (∀i < d)(hdi+j(x) = Φf

pdi+j(x)(pdi+j(x)), we would have

the contradiction s(x) ∈ dom(∆f
i,c) (as s(x) ∈ Df

i,c and (∀j < d)(Φf
pdi+j(x)(pdi+j(x))↓)) and

gi(s(x)) =
∑
j<d

kjhdi+j(x) =
∑
j<d

kjΦf
pdi+j(x)(pdi+j(x)) = Φf

qi(s(x))(qi(s(x))) = ∆f
i,c(s(x)).

Thus there must be a j < d such that x ∈ dom(hdi+j) and hdi+j(x) 6= ∆f
di+j,cd(x). �

Schmerl considers colorings of graphs in classes K of a certain kind. The class K is a universal
class of graphs if there is a set K of finite (coded) graphs such that a graph G belongs to K if and
only if every finite induced subgraph of G is isomorphic to a graph in K. The class K is a natural
class of graphs if it is moreover closed under disjoint sums. That is, if G0 = (V0, E0), G1 = (V1, E1)
are graphs in K with mutually disjoint vertex sets, then G0 +G1 = (V0 ∪V1, E0 ∪E1) is also in K.
It then follows that the class K is closed under countable disjoint sums. For every positive integer
`, the locally `-colorable graphs form a natural class of graphs.

The link between the on-line coloring games and the generalized DNR principles is the following
result, which can be extracted from the proof of [25] Theorem 2.1.

Lemma 5.8 (RCA0). Let f : N → N be a function, K be a natural class of graphs, and d, k ∈ N
be positive. If ∀ has a winning strategy in Γd(K, k) and DNRd(k, f) fails, then there is an f -
recursive graph from the class K that is not globally k-colorable. We may further require that the
connected components of this graph have size at most d, and the graph construction is uniform in
the parameters k, d and f .

Lemma 5.8 has two immediate consequences.

Theorem 5.9 (RCA0). Let K be a natural class of graphs.

• For every k ∈ N, if K is not locally on-line k-colorable but every graph in K is k-colorable,
then ∃d∀fDNRd(k, f).
• If K is not locally on-line k-colorable for any k ∈ N but every graph in K is finitely

colorable, then ∀f∃d∃kDNRd(k, f).
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It is provable in RCA0 that the natural class of forests (i.e., graphs without cycles) is not locally
on-line k-colorable for any k. More precisely, one can recursively construct a strategy for ∀ in the
game Γ2k(K, k), where K is the class of forests. Since forests are locally 2-colorable, it follows
that for every ` ≥ 2, the natural class of locally `-colorable graphs is likewise not locally on-line
k-colorable for any k.

Corollary 5.10.

• RCA0 ` ∀k(∀GCOL(2, k,G)→ ∃d∀fDNRd(k, f)).
• RCA0 ` ∀G∃kCOL(2, k,G)→ ∀f∃d∃kDNRd(k, f)).

When working over RCA0 + IΣ0
2, both ∃k∀fDNR(k, f) and ∀f∃kDNR(k, f) are equivalent to

WKL by Theorem 2.7. A similar argument shows that ∃d∃k∀fDNRd(k, f) and ∀f∃d∃kDNRd(k, f)
are likewise equivalent to WKL over RCA0 +IΣ0

2. It follows from Corollary 5.10 that Conjecture 5.4
is true with RCA0 + IΣ0

2 in place of RCA0.

Corollary 5.11. RCA0 + IΣ0
2 ` (∀` ≥ 2)(∀k ≥ `)(WKL↔ ∀GCOL(`, k,G)).

The relationships among diagonally non-recursive functions, depth d diagonally non-recursive
sequences, and graph colorings need further clarification.

Question 5.12.

• Are ∃k∃d∀fDNRd(k, f) and ∃k∀GCOL(2, k,G) equivalent over RCA0 (or over RCA0 +
BΣ0

2)?
• Are ∀f∃k∃dDNRd(k, f) and ∀G∃kCOL(2, k,G) equivalent over RCA0 (or over RCA0 +

BΣ0
2)?

Note that the answers to both parts of Question 5.12 are positive over RCA0 + IΣ0
2 because the

statements ∃k∃d∀fDNRd(k, f), ∃k∀GCOL(2, k,G), ∀f∃k∃dDNRd(k, f), and ∀G∃kCOL(2, k,G)
are each equivalent to WKL over RCA0 + IΣ0

2.
While DNR(kd, f) implies DNRd(k, f) over RCA0 by Lemma 5.7, it is not known whether the

reverse implication holds.

Question 5.13.

• Are ∃k∀fDNR(k, f) and ∃d∃k∀fDNRd(k, f) equivalent over RCA0 (or over RCA0 + BΣ0
2)?

• Are ∀f∃kDNR(k, f) and ∀f∃d∃kDNRd(k, f) equivalent over RCA0 (or over RCA0 + BΣ0
2)?

Note that the answers to both parts of Question 5.13 are positive over RCA0 + IΣ0
2 because the

statements ∃k∀fDNR(k, f), ∃d∃k∀fDNRd(k, f), ∀f∃kDNR(k, f), and ∀f∃d∃kDNRd(k, f) are each
equivalent to WKL over RCA0 + IΣ0

2.
Similar to the diagonally non-recursive case, it is possible that ∀`∀G∃kCOL(`, k,G) is strictly

weaker than ∀`∃k∀GCOL(`, k,G) over RCA0 +BΣ0
2. However, our techniques do not readily adapt

to avoiding graph colorings because the construction of an eventually DNR(b, h) function given only
an upper bound on the index of a DNR(b, h) function in Lemma 4.6 relies heavily on the homogeneity
of diagonally non-recursive functions. If f0 and f1 are diagonally non-recursive functions, then
another diagonally non-recursive function g can be obtained by choosing g(n) ∈ {f0(n), f1(n)} for
each n. However, if f0 and f1 are graph colorings, there is no reason to expect that a g chosen the
same way is also a graph coloring.

Question 5.14. Does ∀`∀G∃kCOL(`, k,G) imply ∀`∃k∀GCOL(`, k,G) over RCA0 (or over RCA0+
BΣ0

2)?

Note that the answer to Question 5.14 is positive over RCA0 + IΣ0
2 because the statement

∀`∀G∃kCOL(`, k,G) and the statement ∀`∃k∀GCOL(`, k,G) are both equivalent to WKL over
RCA0 + IΣ0

2.
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Motivated by Question 5.12, we conclude by exploring further relationships between diagonally
non-recursive functions and graph colorings. First, we observe that the existence of k-bounded
diagonally non-recursive functions does not suffice to ensure that locally k-colorable graphs are
(2k − 1)-colorable.

Proposition 5.15. RCA0 + BΣ0
2 0 ∀k(∀fDNR(k, f)→ ∀GCOL(k, 2k − 1, G)).

Proof. If RCA0 + BΣ0
2 ` ∀k(∀fDNR(k, f) → ∀GCOL(k, 2k − 1, G)), then also RCA0 + BΣ0

2 +
∃k∀fDNR(k, f) ` ∃k∀GCOL(k, 2k − 1, G). It would then follow from Theorem 5.3 that RCA0 +
BΣ0

2+∃k∀fDNR(k, f) `WKL, contradicting Theorem 4.10. So RCA0+BΣ0
2 0 ∀k(∀fDNR(k, f)→

∀GCOL(k, 2k − 1, G)). �

A (2k − 1)-coloring of a graph G is also a 2k-coloring of G, so asserting that every locally k-
colorable graph G is 2k-colorable is potentially weaker than asserting that it is (2k − 1)-colorable.
This situation raises the following question.

Question 5.16. Does RCA0 (or RCA0 + BΣ0
2) prove ∀k(∀fDNR(k, f)→ ∀GCOL(k, 2k,G))?

Note that because ∀fDNR(k, f) implies WKL over RCA0 for any fixed k ∈ ω, the answer to the
question is positive when restricted to a fixed k ∈ ω. Moreover, the answer to the question is also
positive over RCA0 +IΣ0

2 by Theorem 2.7. Although we have not answered this question in general,
we can formulate an analog of Theorem 5.2 with ∃k∀fDNR(k, f) replacing WKL by restricting the
class of graphs.

Definition 5.17.

• A complete k-partite graph is a graph G = (V,E) where V is a set of vertices of the form
V = {v(i,n) : i < k ∧ n ∈ N} and E = {(v(i,n), v(j,m)) : i, j < k ∧ n,m ∈ N ∧ i 6= j}.
• An ornamented complete k-partite graph is a graph G = (V ∪W,E), where (V,E∩ (V ×V ))

is a complete k-partite graph and every w ∈W is either isolated or adjacent to exactly one
v ∈ V .

Proposition 5.18.

RCA0 ` (∀k ≥ 2)(∀fDNR(k, f)↔ every ornamented complete k-partite graph is k-colorable).

Proof. Fix k ∈ N.
For the forward direction, let G = (V ∪W,E) be an ornamented complete k-partite graph, where

V = {v(i,n) : i < k ∧ n ∈ N} and W = {wn : n ∈ N}. Define a function h : N → N so that, for

all n, x ∈ N, ΦG
h(n)(x) = i if there is an m ∈ N such that wn is adjacent to v(i,m) (and ΦG

h(n)(x) ↑
otherwise). Let g be DNR(k,G). Define χ : V → k by χ(v(i,n)) = i and χ(wn) = g(h(n)). It is easy
to verify that χ is a k-coloring of G.

For the backward direction, let G0 = (V,E0) be a complete k-partite graph, and, given f , extend
G0 to the ornamented complete k-partite graph G = (V ∪W,E), where W = {wn : n ∈ N}, by

defining (wn, v(i,s)) ∈ E if and only if Φf
n,s(n) = i and (∀t < s)(Φf

n,t(n) ↑). Let χ be a k-coloring
of G, and permute the colors so that χ(v(i,0)) = i for each i < k. Then the function g defined by
g(n) = χ(wn) is DNR(k, f). �

Say that a graph G0 = (V0, E0) embeds into a graph G1 = (V1, E1) if there is an injection
h : V0 → V1 such that (∀v, w ∈ V0)((v, w) ∈ E0 → (h(v), h(w)) ∈ E1). Notice that a graph is
k-colorable if and only if it embeds into a complete k-partite graph. In fact, it is not hard to see
that RCA0 proves this fact. We can rephrase Question 5.16 in terms of embeddings as follows.

Question 5.19. Does RCA0 (or RCA0 + BΣ0
2) prove the following statement?

∀k(∀fDNR(k, f)→ every locally k-colorable graph

can be embedded into an ornamented complete 2k-partite graph)
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Again, the answer to Question 5.19 is positive over RCA0 + IΣ0
2 by Theorem 2.7.
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