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ABSTRACT

Many interesting combinatorial theorems can be expressed in the language of
Zg, formal second order arithmetic. Unlike formulas of first order arithmetic, formu-
las of second order arithmetic can refer to sets of integers. This thesis analyzes for-
malizations of many theorems of countable combinatorics, determining which set

existence axioms are necessary in their proofs.

The framework of axioms used here consists primarily of the subsystems RCA,,
WKL, and ACA,;. Much of the pioneering work done in these subsystems is due to
Friedman and Simpson. In many cases it is possible to show that a theorem is
equivalent to a set comprehension axiom over the weak base system RCA, Results
of this sort, called reverse mathematics, leave no doubt as to what set existence
axioms are necessary in a proof. A surprising number of theorems of countable com-

binatorics vield results of reverse mathematics.

The combinatorial theorems analyzed include varicus infinite marriage theorems
and related results concerning infinite graphs and partial orders. Several results of
infinite Ramsey theory, including Hindman’s theorem and Milliken’s theorem, are
also considered. In some cases, independence results are proven, using model

theoretic techniques developed in the thesis.
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CHAPTER 1

SECOND ORDER ARITHMETIC

This thesis extends the work of Simpson and Friedman in subsystems of second
order arithmetic. The primary goal here is to determine what axioms are necessary
to prove various statements of combinatorics. Combinatorics is interpreted in a
broad sense, including transversal theory, general graph theory, and Ramsey theory.
Simpson’s program of reverse mathematics includes the analysis of many theorems of
ordinary mathematics within formal second order arithmetic. Ordinary mathematics
is the term used by Simpson to describe non-set-theoretic mathematics, including
geometry, calculus, differential equations, countable algebra, real and complex
analysis, and certain topics in topology and functional analysis. Ordinary mathemat-
ics does not include abstract set theory or gemeral topology. The combinatorial
theorems presented here certainly fall well within the heading of ordinary mathemat-
ics.

Despite the emphasis placed above on ordinary mathematics and formal arith-
metic, the methodology of this thesls is not restricted to these areas. For example,
the mode! theory developed in Chapter 5 is neither purely syntactic nor ordinary.
However, the set theoretic techniques are used to reveal aspects of the relative
strength of combinatorial statements. Although such restlts are not theorems of

reverse mathematics, they do contribute to the program of reverse mathematics.



1.1. Z,

The system Z, also known as I1;°~CAy, is a formalization of second order
arithmetic. Zg is a two typed first order theory with number variables and set vari-
ables. Number variables are denoted by lower case letters like z, y, and 2z, while
set variables are assigned upper case letters like X, Y, and Z. The language of Z4
contains quantifiers for both number and set variables. The intended domain of the
number quantifiers Yn and Tn is the set of natural numbers, N. The set
quantifiers /X and —[X are intended to range over the subsets of N. Symbols are
included for the constants 0 and 1, and also for the binary operations ' (successor),
+ {addition), and + {multiplication). Numerical terms are built up as usual from

combinations of number variables, constants and the operations.

The language of Z, also includes the relation symbols = and €. Atomic formu-
las are of the form #,==t, and ¢,€X where t, and {4 are numerical terms. Formulas
in the language are constructed from atomic formulas using the usual propositional

connectives, number quantifiers, and set quantifiers,

Formulas may be classified according to the following scheme. A formula with
no quantifiers is called a L (or 11y) formula. A 52 formula is of the form —nQ o
where @ is Ego and —n{) represents a sequence starting with an existential quantifier
and containing n alternating quantifier blocks. The class of 10 formulas is defined
similarly. The superscript O indicates the possible presence of set parameters. A for-
mula is arithmetical if it contains no set quantifiers. The above scheme can be
extended to classes sueh as 5, and IL! of formulas prefixed by alternating blocks of

set quantifiers.



The axioms of Z, consist of twelve basic axioms plus a comprehension scheme.

The basic axioms consist of the following ordered semi-ring axioms (B1-B11), and the

induction axiom (B12).
Bi: n' £0.
B2 n! =m' —n=m,.
B3: n4l==nf.
B4: n +0=n.
B5: n+Hm' )={n+m) .
B6: n x 0=0.
B7: nx(m' )=(nxm)+n.
B8: n <m «—r {r AO/\n +r=m).
B9 n=m —m=n.
B10: (k==m A\m=n)—k=n.
Bil: n==mn.
B12: (0€X/\Yn (n €Xn +1€X))—Yn (n €X)
The comprehension scheme for Z, consists of formulas of the form
=IX/n (¢(n )ern €X)
where ¢(n ) is any formula in the language of Z, in which X does not occur free.

A more formal development of the material in this section can be found in [50].



1.2. Subsystems of Z,

Many of the proofs in this thesis are carried out in weak subsystems of Z,. The
subsystems of interest here are called RCA,, WKLy, and ACA, Each of these

subsystems is defined below, and an indication of its strength is given.

The axioms of the subsystem RCA, consist of the basic axioms (B1-B12), the
5 induction scheme, and the recursive comprehension scheme. The % induction

scheme, denoted I¥, consists of formulas of the form

(SONVR (¢(n )—~¢(n +1)))=Vn (¢(n )

where #(n ) is a Ty formula, possibly with set parameters. The recursive comprehen-

sion scheme consists of formulas of the form

n (¢(n )erp(n )XY n (n €Xe+d(n )

where €%, ¥€ll?, and X occurs free in neither ¢ nor . Many notions of ordinary

mathematics are expressible via codes within RCA, The pairing function
(z,y), m%(m 4y )z +y+1)+z can be used to code a function f :N—N as a set of

integer codes for pairs. Exponentiation can be used to code finite sequences of
integers and finite sets of integers as single integers. Sufficient amounts of elemen-
tary number theory can be proved in RCA, to insure that such codes are well
behaved. These codes can be used to create codes for more complicated structures.
For instance, codes representing countable algebraic structures, countable sequences
of reals, and continuous functions on the reals can be devised [50]. Some basic prop-

erties of these structures can be proved in RCAg, but many theorems require



stronger axiom systems. Because of this, RCA, serves ideally as a weak base system

for the program of reverse mathematics described in the next section.

The next stronger subsystern is called WKL, The axioms of WKL consist of
the axioms of RCA,, together with an axiom called Weak Konig’s Lemma. Weak
Konig's Lemma asserts that every infinite 0-1 tree contains an infinite path. A 0~1
tree is a subset of Seq,, the set of all finite sequences of zeros and ones, which is
closed under initial segments. An infinite path for a 0-1 tree T is a function,
f :N—2, such that for each n the sequence given by f restricted to n 1s an ele-
ment of T. The subsystem WKL, is sufficient to develop a reasonable theory of

continuous functions (see [8],[48],[49),{50]).

The subsystem ACA, is strong enough to prove a large portion of the theorems
of ordinary mathematics. For example, a good theory of convergence can be
developed in ACA, [50]. The strength of ACA, can be nicely characterized in two
ways. Considering only purely first order formulas, the theorems of ACA, are
exactly those of first order Peano Arithmetic, PA. The full theory of ACA, isclates
exactly that portion of mathematical practice called “predicative analysis” by Weyl
[51]. The axioms of ACA, are those of RCA, plus the arithmetical comprehension

scheme. This comprehension scheme consists of formulas of the form

XV (n €Xerg(n))
where ¢(n ) is an arithmetical formula in which X does not occur. ACA, is strictly

stronger than WKL [8].

The subsystem ACA" is referred to in Chapter 7. This system extends the

axioms of ACA, by requiring that the w-jump of every infinite set exists. Although



not used here, the subsystems ATR, and [}~CA, are also commonly used. The
weaker of these systems, ATRy is much stronger than ACA," Information on

these subsystems may be found in [3], [8], [9], [48], and [49].

1.3. Reverse Mathematics

Many of the resuits in this thesis are contributions to the program of reverse
mathematics. This program, set forth and advanced by Simpson (48], [49], [50]),
was inspired by the work of Friedman [8]. The goal of the program is to determine
very precisely the proof theoretic strength of statements of ordinary mathematics.
The process is straightforward. First, one proves a theorem T in a supersystem, S,
of RCA, Then one proves the axioms of 8 within the system consisting of RCA,
and T. This second step, called a reversal, is possible only when the system 8 is the
wealkest in which T can be proved. In this way, reverse mathematics quickly isolates
exactly those set existence axioms necessary in the proof of theorems of ordinary
mathematics. We now state five examples of reverse mathematics used extensively

throughout this thesis. Proofs of these results may be found in [50].
Theorem 1.1: (RCAy} The following are equivalent:

i) WKLy,

ii) If T is a tree and h :N—N is a function such that for every r€T

Wa <(r)(rn)<h(n)),

then there is an infinite path for T. {Here lh(r) denotes the length of 7 and

H{n ) denotes the n* element of 7.)



Theorem 1.2: (RCA,) The following are equivalent:
i) WKLg.
i)y If f:N—~IN and g:N—N are injections such that for all j,keN
g{7)4f (k), then there is a set X such that

Vin((f (7)=n—neX)\(g {7 )=n—n X))} .

Theorem 1.3: (RCA,) The following are equivalent:
i) ACA,.
il) (KK6nig’s Lemma) If T is a finitely branching tree, that is,
Wn =k (¢€T Alh(o)=n }—o{n-1)<k),
then there is an infinite path for T.
Theorem 1.4: (RCAp} The following are equivalent:
i} ACA,.

i) If f:N-»N is an injection, then the set Ran(f Ye={y EN:Taf (2 )=y}

exists.
Theorem 1.5: (RCA,) The following are equivalent:
i) ACA,.
ii) Ramsey’s theorem for triples and two colors. (This is RT{(3,2) in the nota-
tion of Chapter 6.)

iii} Ramsey’s theorem for n-tuples, for any fixed n &w.



1.4, w-models

Another way of comparing subsystems of Z, is to examine their w-models. By
an w-model, we mean a model in which the integer domain is w and the set domain is
some subset of the power set of w. The w-models of subsystems of Z, can be used to

determine the recursion theoretic content of theorems of ordinary mathematics.

The minimal w-model of RCA, is <wREC>, where REC is the class of
recursive sets. In general, the set domain of an w-model of RCA, Is a Turing ideal.
A Turing ideal is a subset of the power set of w closed under relative recursiveness
and join.

The set domains of w-models of WKLy are Scott systems. These classes of sets
have been extensively studied in the recursion theory literature [45]. By applying the

Shoenfield-Kreisel low basis theorem [46], one can easily prove the following theorem.

Theorem 1.6: There is an w-model of WKL, in which every set is of low degree,

i.e. for each set X in the model, if a==deg{X), then a/ <0' .

The set domains of w-models of ACAy are called jump ideals. A jump ideal is
a Turing ideal closed under the jump operation. Thus every w-model of ACA, con-

tains every finite jump of 0.

1.5. Overview of the Thesgis

Chapters 2, 3, and 4 contain many theorems of reverse mathematics. Basic ver-
sions of Hall’s marriage theorem are treated in Chapter 2. Chapter 3 contains varia-
tions and applications of the material in Chapter 2. Several theorems concerning

graphs, chromatic numbers, and partial orders are presented there. Chapter 4



analyzes countable Boolean rings within subsystems of Z,. The material in Chapter

4 is independent of that in Chapters 2 and 3.

Chapter 5 develops model theory for the formal subsystems. Notions of ultra-
powers and clones are introduced. These constructions are used in the independence

results of Chapter 6 and the model theoretic results of Chapter 7.

Ramsey’s theorem for singletons and pairs is attacked in Chapter 6. Several
independence results are presented, and a program for solving the 2-3 problem is out-
lined. The chapter concludes with a theorem of reverse mathematics concerning

min-hemogeneous sets.

Hindman’s theorem and Milliken’s theorem are the topic of Chapter 7. An
algebraic version of Hindman’s theorem based on the Boolean rings of Chapter 4 is
presented. Then the model theoretic techniques of Chapter 5 are used to prove a
finite combinatorial theorem. The ultrafilters in this proof are related to Milliken’s

theorem in the final section.

Throughout the thesis, notation is defined as it is introduced. Much of the
notation for common sets of codes in Zy is that used by Simpson [49], [50]. The
notation used in Chapter 5 for first order models is similar to that used by Paris and

Kirby [25], (26}, [36].



CHAPTER 2

THE MARRIAGE THEOREM

This chapter consists of two examples of reverse mathematics. We will consider

three versions of the marriage theorem and their provability in the systems of second

order arithmetic outlined in Chapter 1.

A marriage problem consists of two sets, B and G, and & binary relation, R,
such that RCEBXG. In anthropomorphic terms, B is a set of boys, G is a set of
girls, and {2,y )R means boy ¢ knows girl y. A solution to the marriage problem
given by R is a one to one function f CR mapping B into G. Thus [ (z )=y
means that boy z marries girl y. Polygamy is disallowed, and every boy must have

a wife. However, a solution does not guarantee that every girl will have a husband.

Certainly, not every marriage problem has a solution. The marriage theorems
state necessary and sufficient conditions for marriage problems to have solutions. A
condition common to all such theorems is condition H. We say a marriage problem
satisfies condition H if every subset of n boys knows at least n girls. Since condition
H is clearly necessary for a solution, only its sufficiency remains to be proved. With

this terminology, we are prepared to examine some particular marriage theorems.

2.1. The Finite Marriage Theorem and RCA,

In this section we will consider a version of the marriage theorem which is prov-
able in RCAy. We will call a marriage problem R finite if B, the set of boys, is

finite. The set of girls, G, and hence the relation R, need not be finite. Philip Hall

10
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[14] proved that condition H is sufficient to ensure that a finite marriage problem has
a solution. The following theorem states that this proof can be carried out in

RCA,.

Theorem 2.1 {RCA;) Any finite marriage problem satisfying condition H has a

solution.

Proof: Let R be a finite marriage problem satisfying condition H. By applying sy
we can find a finite subset of the relation R satisfying condition H and including
each boy from the original relation. Thus, we may assume that R is a finite relation,
that is, each boy knows only finitely many girls. By 1P, there is a subset SCR
such that S includes all the boys for R, satisfies condition H, and no proper subset

of 8 meets these requirements.

We claim that S is actually a solution to the marriage problem. Since S
satisfies condition H, it suffices to show that 8 contains a unique pairing for each
hoy. Suppose not. Fix & such that (b,g1),(0,92)ES where 9155949 By the
minimality of S, 8;==8-{(b,5)} does not satisfy condition . Let B, be a collection
of boys such that |Gy| <|By| where G={t =z €B4(x ,t)e8,}. Since § satisfies
condition H, b €By, and so g,€G;. Similarly, using Sy=S-{(b ,¢}}, we can find By
and G, such that |Gl <|Byl, bEB;, and g4€G, Let By=(BiNBy)-{b} and
Gy={t =]z €B; (v ,t}eS}. Since S satisfies condition H, |Gyl >[Bs|. Let

B,=B,UB,;. We know that b €B;NB,, so
| B, =|By| + Bol | Bg| 1.

Consider the set G,={t: Tz €B, (z,t)€S}. We know that ¢,6G, and ¢ ,€G,, so

G4ﬂG1UG2. Th'lIS,
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|Gy |Gyl H Gyl Gyl
Summarizing, we have
| By =| Byl +| Bol - Byl -1 Gy +H Gl -| Go| =[G
so | By >|G,|. But S satisfies condition H, so | B, <| G|, a contradiction. [
Using this version of the finite marriage theorem, we can pass on to two infinite

marriage theorems. Since neither of these will be provable in RCAy, each will pro-

vide an example of reverse mathematics.

2.2. The Marriage Theorem and ACA,

In this section we will consider an infinite version of the marriage theorem. By
an infinite marriage theorem, we mean one in which the set of boys, B, is infinite.
Marshall Hall showed that such marriage problems have solutions provided that each
person knows only finitely many members of the opposite sex, and condition H holds
[15]. This version is equivalent to ACAg over the base system of RCAy. In proving

this equivalence, the following theorem provides an example of reverse mathematics.
Theorem 2.2 (RCA;) The following are equivalent:
i) ACA,
#i} Any marriage problem in which each boy knows only finitely many girls,
and in which condition H is satisfied, has a solution.

Proof: First, we prove that i) implies i1). By Theorem 1.3 it suffices to prove ii)
using Ké&nig's lemma for arbitrary finitely branching trees. Call a sequence o of

length n a partial solution to the marriage problem if
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1) for all m <<n, (m ,o(m)}}ER, and

2) for all 7,k <n, o(f )==o(k ) implies j =k .
Let T be the set of all partial solutions. T is AL in R, so T exists. T is a finitely
branching tree, since each person has finitely many acquaintances. By Theorem 2.1
and condition H, T is infinite. Hence, by Konig’s lemma, T has an infinite path.
Such a path gives a solution to the marriage problem.

We now prove the reversal, i.e. that ii) implies i). This proof is similar to a
recursion theoretic proof of McAloon [32]. Let f be a total function mapping N

one-to-one intc N. By Theorem 1.4 it suffices to show that the range of f Is

defined, using ii). Define the relation R of the marriage problem as follows:

1) Forall n, (2n,2n )cR.

2} If f (n)<n, then (2n+12f (n})ER and (2f (n),2n +1)ER.

3) If f (n)>n, then (2n +1,2n +1)ER.
It can easily be shown that R satisfies the hypotheses of ii). Let g be a solution to
the marriage problem given by R, i.e. ¢ (2 )=y implies “z marries y.” Then the
range of f is AL in g. In fact, » is in the range of f precisely when g (2n )s42n
or there is an m <n such that f (m )=n. J

Since the above theorem shows that an infinite version of the marriage theorem
is equivalent to a strong version of Konig’s lemma, it seems reasonable $o expect that

some version would relate similarly to WKLy Indeed this is the case, as is shown in

the next section.
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2.3. The Marriage Theorem and WKL,

In this section, we consider another version of the infirite marriage problem.
We will call a marriage problem bounded if there is an auxiliary function 2 from B
into G such that (z,y )ER implies y <k {2 ). In anthropomorphic terms, 4 (z) is an
upper bound on the “addresses” of the girls which boy z knows. The following
theorem states the connection between bounded marriage problems and WKL, It is

another example of reverse mathematics.

Theorem 2.3 (RCA,) The following are equivalent:
i) WEKL,.
ii) Every bounded marriage problem in which each boy knows only finitely
many girls, and which satisfies condition H has a solution.

Proof: To prove that i) implies i), we mimic the proof of Theorem 2.2. Since the
tree T associated with a bounded marriage problem is itself bounded, by Theorem
1.1, WKL suffices to prove ii}.

The reverse implication has a proof similar to one used by Manaster and Rosen-
stein [26]. Let T be a 0-1 tree, where p denotes the root of T and o denotes a typical
node. Let the set of boys, B, be the set of nodes of T. The relation R is defined as
follows:

1) If ¢ is a successor of p then (p,0)ER.

2) For each o%p, (0,0)€R.

3) For each o5%p, if 7 is a successor of o, then (o,7)ER.
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Since each boy knows the girl whose “name” is the same as his own, condition H is
trivially satisfied. Furthermore, T is a 0-1 tree, so R gives a bounded marriage prob-
lem. Finally, each person knows at most three other people. Thus, by ii), there is a
funetion g from the nodes of T into the nodes of T, giving a sclution to the mar-

riage problem defined by R.

It remains to show that ¢ codes a path through T. Let og=g(p), and
6,417 (0, ). Note that for any ¢ and 7, g(o)==¢ (s} if and only if e==r. Since
g (p)F4p, it follows that for every m, o, 560, 1. By the definition of R, for each n

o, +1 must be a successor of o, . In this way, g codes a path through T. [I§

The above theorem is the final example of reverse mathematics in this chapter.
Besides being interesting itself, it considerably simplifies the proofs of many of the

results in the next section.

2.4. Recursion Theoretic Results

In this section, we give four results in recursion theory which can be easily
proved using the previous theorems. A marriage problem is called recursive if the
relation R is recursive. The degree of its solution is the degree of the function ¢,
coded as a set of integers. A rtecursive marriage problem is recursively bounded if
the auxiliary function h is recursive. For each result below, references to the original

recursion theoretic proofs are given.

Porism 2.4 (McAloon [32]) There is a recursive marriage problem for which 0' is

recursive in every solution.
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Proof: Let f be a recursive function enumerating 0’ in the proof of the reversal in

Theorem 2.2. i

Porism 2.5 (Manaster and Rosenstein {29]) There is a recursively bounded recur-

sive marriage problem with no recursive solution.

Proof: Let T be a recursive 0-1 tree with no recursive paths in the proof of the

reversal in Theorem 2.3. JIi}

Corollary 2.6 (Manaster and Rosenstein [28]) Every recursively bounded recursive

marriage problem has a solution of degree a, where a' <0 .

Proof: By Theorem 1.6 there is an w-model of WKL, in which the degree of every
set satisfies a' <0' . By Theorem 2.3, every recursively bounded recursive marriage

problem has a sclution in this model. .

Porism 2.7 There is a recursively bounded recursive marriage problem which has no

solution that is a finite Boolean combiration of recursively enumerable sets.

Proof: Jockusch [20] proved the existence of a recursive 0-1 tree having no path
that is a finite Boolean combination of recursively enumerable sets. Let T be such a

tree in the proof of the reversal in Theorem 2.3. I



CHAPTER 3

COMBINATORIAL VARIATIONS

This chapter consists of several variations on the basic marriage theorems of
Chapter 2. Each variation is shown to be equivalent to a subsystem of second order
arithmetic. The equivalences are then used $o provide short proofs of some recursion
theoretic results. Furthermore, all the applications in this chapter are combinatorial
in nature.

The first section of this chapter is concerned with symmetric versions of the
basic marriage theorems. In the second section, the bounded symmetric marriage
theorem is used in developing a version of Banach’s theorem. These results are then
applied to problems in graph theory, including the existence of certain subgraphs and

node colorings.

3.1. Symmetric Marriage Theorems

This section is concerned with solutions to marriage problems of the sort intro-
duced in Chapter 2. Here, however, we will attempt to avoid the creation of spin-
sters. In more mathematical terms, we will require that the solution function, f , is
a one to one matching of the set of boys, B, to the set of girls, G. When such a
solution exists, we will call it a symmetric solution. In order to assure the existence
of symmetric solutions, we will need a symmetric condition, condition Hyy,, . We will
say that a marriage problem satisfies condition H,y, if every subset of n boys

knows at least n girls and every subset of n girls knows at least n boys. Using this

17
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terminology we can examine the existence of symmetric solutions to infinite marriage

problems in ACA; and WKL,

The following theorem is the symmetric version of Theorem 2.2. The proof is

very similar.
Theorem 3.1 (RCA,) The following are equivalent:
i) ACA,
ii) Any marriage problem in which each person knows only finitely many
members of the opposite sex, and in which condition Hy, is satisfied, has a
symmetric solution.
Proof: First we prove that i) implies ii) by proving i) using Konig’s lemma for arbi-
trary finitely branching trees. Let o denote a partial symmetric solution to the mar-
riage problem. Here, o denotes a sequence of n pairs such that:
1) for all m <n, {m ,0i(m))ER,
2) for all m <n, (og(m ),m JER, and
3) for all 5,k <n, 0y(4 )=Fk if and only if ook )=7 .

Informally, the m™ pair in the partial solution determines the wife of the m™ boy
and the husband of the m ™ girl. The first two conditions insure that prospective
spouses are acquainted. The third condition simultaneously prohibits polygamy and
insures that the both spouses witness their marriage. Let T be the set of all partial
solutions. T is Af’ in R, so T exists. T is a finitely branching tree, since each per-

son has finitely many acquaintances. By Theorem 2.1 and condition H,y, , T s
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infinite. By Kénig's Lemma, T has an infinite path. Such a path is a symmetric

solution to the marriage problem.

The proof of the reversal is immediate from the proof of Theorem 2.2. Since
the relation R of the previous proof is symmetric, condition Hg,, holds. By ii), this
marriage problem has a symmetric solution. The existence of any solution is

sufficient to prove ACA,, as was previously shown. N

Given the above proof, we can immediately convert Porism 2.4 into a sym-
metric result,

Porism 3.2 There is a recursive marriage problem for which 0' is recursive in every

symmetric solution.

We now present a symmetric version of the bounded marriage problem. We
will call a marriage problem symmetrically bounded if there are two functions, hy
and kg, such that (2,y)ER implies y <hy(z) and z <h o(v). A special case of the
symmetrically bounded marriage problem is a k-society. A k-society is a marriage
problem in which each person knows exactly k other people. As was the case in
Chapter 2, the existence of solutions to bounded marriage problems is equivalent to

WKL{) Qver ROAG
Theorem 3.3 {RCA,) The following are equivalent:
i) WKL,

i) Every symmetrically bounded marriage problem in which each person knows
only finitely many members of the opposite sex, and which satisfies condition

H,, has a symmetric gotution.
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iii) For every & =1, every k-society has a symmetric solution.

iv) Every 2-society has a symmetric solution.
Proof: To prove that i) implies ii), we mimic the proof of Theorem 3.1, applying
Theorem 1.1 in place of Konig’s lemma for arbitrary finitely splitting trees. To
prove that ii) implies iii), it suffices to note that any k-society is symmetrically
bounded and satisfies condition Hyy,, . Since iii) clearly implies iv), it remains only to
show that iv) implies i).

By Thecrem 1.2 it suffices to use iv) to find a set X which separates the disjoint

ranges of two injections. (;‘Ja,ﬂ the injections ¢, and ¢ The proof uses the pairing
function (2,9 ), w-%—(m +y Yz +y +1)4+2 . RCA, proves that this pairing function is
one to one and onto [50]. Let {z ), and (z); be inverse pairing functions; that is,
(z,y), =2 implies (2 Jo==2 and (z );==y .

The basic idea of the proof is to construct infinitely many marriage problems

h

such that the symmetric solution of the n* problem decides whether or not n Is

included in the separating set. The construction of the nt

problem is halted after
2m people if ¢{m)=n or co{m )==n_. At this point it is appropriately “carrier”

problem, guaranteeing that its solution will be “in phase” with all the other solu-

tions. In general, we define the 2-society R as follows:
1) (0,0} € R.
2) For all n €N, if (n };=0 then (3n +2,3n +-2)€R.

3) For all n €N, if ¢{((n)1)==(n ) and (n )y is even, or ¢q((n );)==(n ) and (n )

is odd then include (3n,3n+1), (3n+2,3n), (3n+1,3n+3), (3n+1,3n +2),
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(8n +3,3n +1}, and (3({n }o,(n J1+1), +2,3((n Jo.(n ) +1), +2) in R.
4) Por all nEN, if o ((n J)=(n )o and (n ), is odd, or ¢{(n))=(n o and (s );
is even, then include (3n,3n+1), (3n+1,3n), (3n+1,3n +3), (3n+2,3n +1),

(3n +3,3n 2}, and (3((n )o,(n )y+1), +2,3((n Jo,(n }+1), +2) in R.

5) For all neN, if ¢ ({n };)5%(n )y and co{n )1)55(n }y, then include the six
pairs {3n ,3n 41}, (3n +1,3n ), (3n -+1,3n +3), (3n +3,3n +1),
(8 +2,3((n )o,(n )1 +1), +2), and (3((n Jo,(n )1-+1), +2) in R.

Claim 1. R ig a 2-society.

Proof : We will show that each boy knows exactly two girls. Suppose the boy’s
“name’ is 3n. If n==0, by 1) he knows exactly one girl with a name less than or
equal to his. If n >0, exactly one of 3), 4), and 5) holds for n—1. In each case, boy
37, under his alias of 3{n —1)-+3, has a “prior acquaintance” with a girl whose name
is less than or equal to his. For any n, exactly one of 3), 4), and 5) holds for n. In
each case, boy 3n knows girl 3n +1, but no girls with larger names. Thus boy 3x
knows exactly two girls. Each boy 3n +1 meets exactly two girls through 3), 4), or
5). Finally, each boy 3n +2 meets one girl in clause 3), 4) or 5) for n, and has one
prior acquaintance via 3), 4), or 5), if (n );5%0 or via 2} if (n );==0. By a similar argu-
ment, each girl knows exactly two boys.

Let h:N—N be a symmetric solution to the marriage problem given by R.
Since this is a symmetric solution to a 2-society, without loss of generality we may
assume that b (0)==0. Let X=={n €N:A(3(n,0), +2)==3(n 0}, -+2}. Claims 3 and 4

will show that X is the desired set. As an intermediate step, we prove:
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Claim 2 i) If h(j)=3n then j <3n.
i) If A (7)=3n+1 then j >3n +1.

Proof : Since h(0)=0, for n =0 the claim is obvious. Suppose that the claim holds
for n. If 8) holds for n, A(3n+2)£3n. By symmetry of the solution,
B {3n +1)==3n +3, so i} holds for n+1. Since ii) holds for n, h {3n +3)=3n+1, so

h{3n +3)553(n +1)+1 and so ii) must kold for n +1.

If 4) or 5) hold for n, then h{3n +1)==3n, so h{3n +1)%3n -+3 and i} holds for
n+1. Furthermore, A {3n +3)5£3n +3, so h {3n +3)5£3(n +1)+1. Thus ii) holds for
n 41,

Claim 3: Ran(c;)CX .

Proof : Suppose ¢y{j )=k and n==3(k,j),+2. If j is even, by Claim 2.) and
part 3) of the definition of R, we have that h{n)=3(k,5j-1),-+2. Since
h(3(k,5~2), +2)43(k 5 -1), +2, h(3(k,5-2), +2)=3{k ,j-3), +2. Continuing in
this fashion, we find that A(3(k,2), +2)=3{k 1}, +2, which Iimplies that
h(3(k ,0), +2)=3(k ,0), +2, so k €X.

If 7 is odd, by Claim 2.ii) and part 4) of the definition of R, & (n J==n-1. Since
h{(n)#3(k,j~-1), +2 and k is one to one, h(3(k,j-2), +2)=3(k,s 1), +2. Con-
tinuing in this fashion, we find that A (3(k 1), +2)=3(k 2}, +2, forcing
h (3(k ,0), +2)=3(k 0), +2, L.e. kEX.

Claim 4: Ran{c o)X=

Proof: Suppose cof7 )=k and n==3{(k,7),+2. I j is even and
h(3(k ,0), +2)==3(k 0), +2, then A(n-2)==n-1, contradicting Claim 24i). If j is

odd and h (3(k ,0), +2)==3(k ,0), +2, then k (n )=n -2, contradicting Claim 2.i).
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Claims 3 and 4 complete the proof that a symmetric solution to the given marriage
problem yields a separating set. This concludes the proof that the existence of sym-
metric solutions to 2-societies implies WKL, This last implication completes the

proof of Theorem 3.3.

Using Theorem 3.3, we can immediately convert the remaining recursion
theoretic results of Chapter 2 into symmetric results. For the sake of completeness,

we list these in the following corollary.

Corollary 3.4 i) {Manaster and Rosenstein [29]) There is a recursively symmetri-
cally bounded recursive marriage problem which has a symmetric solution, but has

no recursive symmetric solution.

if}) (Manaster and Rosenstein [29]} Every recursively symmetrically bounded
recursive marriage problem which has a symmetric solution, has a symmetric solution

of degree a, where a' <0 .

iii) (Manaster and Rosenstein [30]) For each & >2 there is a recursive k-society

which has no recursive symmetric solution.

iv) For every k €w, every recursive k-society has a gymmetric solution of degree

a, where a’ <0 .

3.2. Banach’s Theorem

In this section, we will examine two special cases of the symmetric marriage
theorem. In order for a symmetric solution for a marriage problem to exist, it is
clearly necessary for each person to know at least one other person. Banach’s

theorem tells us that in some cases this is sufficient. This leads us to formulate the
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following version of Banach’s theorem.

Countable Bounded Banach Theorem: Let f :N—N and g :N—IN be injections
such that the ranges of f and g exist. Then there is a bijection & :IN—N such that
for all m ,n €N, h(n)=m implies [ (n)=m or g (m }=n.

Since this version of Banacl’s theorem deals only with maps from N to N, it is
clearly countable. The existence of the ranges of f and g Is essentially a bounding
condition. As will be seen in the following theorem and its proof, the Countable
Bounded Banach Theorem is indeed a special case of the bounded symmetric mar-

riage theorem. Thus, the only difficulties in the proof arise in proving the reversal.
Theorem 3.5 (RCAg) The following are equivalent:

i} WKL,

ii) Countable Bounded Banach Theorem.
Proof: We first show that i) implies if). Let f and g be as in ). Let R be the
relation given by (m ,n)ER if and only if f (m )=n or g(n J==m . Construct &y by
1) hy(m)=n if g(n)=m and n>f (m), and 2) h(m)=7F (m) otherwise. Con-
struct ko by 1) ho{m )==n if f (n)=m and n >g(m), and 2) ho(m )==g (m ) other-
wise. Since the r&ngés of f and ¢ exist, hy and hy are AP in f ,g, and their

ranges. Thus hy and h 5 exist.

R defines a marriage problem. Since f and g are injections, condition Hyy, is
satisfied. Furthermore, R is symmetrically bounded by hy and hg Thus, by
Theorem 3.3, there is a symmetric solution to the marriage problem. Since the solu-

tion is a subset of R, it gives the desired bijection, /A .
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We now turn to the proof of the reversal. By Theorem 1.2, it suffices to use ii)
to find a set X, which separates the ranges of two injections, ¢, and ¢, which have
disjoint ranges. Toward this end, we define two new injections, f and ¢, in terms

of ¢, and ¢,

For each n which is not a power of a prime, let f (n)==g(n)=n. Let p,

th

denote the n** prime. We define f on powers of p as follows:

B (Pry=pPn -
2)If i >0, f (p)=p," *.
pt i i <i-1e o )=n V7 <i(c o5 )=n),

N1 g 241y _ . ,
VIEE >0, f (p,” ) P2 otherwise.

The function ¢ is defined on powers of primes by:

4) If >0, g (p,7 TH=p,H **

. p Bt iy <i-1ey(§)=n )5 <i-1(e o7 J=n),
5) 1040, g (2, =\ . 2

P otherwise.

We now show that f and ¢ satisfy the hypotheses of the countable bounded
Banach theorem.
Claim 1: [ and ¢ are injective.
Proof : Clearly, f is injective on integers which are not powers of primgs. Also, f
is clearly injective from even powers of primes $o odd powers of primes. Thus, we
need only show that f is injective from odd powers of primes to even powers of
primes. Suppose, by way of contradiction, that f (pHy=f1 (p})=p,% Then, without
loss of generality, k==1 and [=3. But, p,=f (p, )=/ (p,f“), contradicting our

assumption.
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Now suppose that f {pF)=f (p)y=p,* *%, where 1 >>0. Then, without loss of

generality, k =27 +1 and {=2¢+3. Since [ (pE)=f (pp % tH)==p, % *?, we have

i <i-1ey(f)=n) V i <i(eofs)=n.
Thus, —§ <i(c(j)=n) or ~j <i+1{eoj)=n). So, by the definition of f , we
have f (pi)=1 (p 20 0T 2+ contradicting our assumption.

To show that g is injective, we proceed in a similar manner. In this case, we
need only show that g is injective from even powers of primes into odd powers.
Suppose, by way of contradiction, that ¢ (p.y=g (p,f J=p, 2 *1. Without loss of gen-
erality, we may assume that k =2¢ and [=2(¢ +1). Since g (p,%)=p, *1, there is a
j<i~1 such that ci{7)=n or cq{j)=n. Thus g{pi)=g (p, 20 ), 2 +IHL
contradicting our assumption.

Claim 2. f , g, and their ranges exist.

Proof : The functions f and g are AP in ¢q and cg, and so exist. To see that

their ranges exist, note that:

1) Ran(f ) = {ENY: <hkn <k ((eqli -)=n\Veoli)=n ) k7#p,2 "),

and

9) Ran(g) = {k eNY7 <kn <k{(c(i-1)=n Ve g(i —1)==n) —k s£p,2 *1}.
These sets are also AL in ¢ and ¢

So far, we have shown that f and g satisfy the hypotheses of the countable
bounded Banach theorem. Applying ii) yields a bijection, f, such that A {n )==m if
and only if £ (n)=m or g(m)=n. Let X be the set of all n such that & (p, )==p, .

We will now show that X separates the range of ¢ from the range of ¢ .
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Claim 3: Ran(cq) € X

Proof : Suppose that ¢ {m)=n. Then p,?™ *3is not in Ran(g). Since n is not in
Ran(c,), and ¢y is injective, b (2™ ™=1 (p, ™ *¥)==p,>" 2. Now, h is injective,
so h{p,2" N£p, 2 o= g (p, 2" *h). Thus h(p,*" N=f (p,”" *'). Continuing in
this fashion, we get h (p, )==f {p, )}=p,, so n EX

Claim 4: Ran(c o) is disjoint from X.

Proof : Suppose cg(m )=n. Then p,2™*? is not in Ran(f ). Thus,

k (pn%m +1)=g -l(pn2m +1)wpn2m A2,

Since h iz well defined, A{p,S™™)  FESf (p, 2" H=p,2™ and so,
B (2™ V=g Y pp™==p, 2™ Continuing in this manner, we get h(p,)=g p, )=
p,2. By the definition of X, n is not in X . ]

Theorem 3.5 has two recursion theoretic corollaries.

Corollary 3.6: (Remmel [41]) There are two recursive injections with recursive
ranges, f and g, such that no recursive bijection can be constructed from them.
That is, for no recursive bijection h is it the case that for all m ,n €N, k(m j=n

implies f (m)==n or g(n)=m.

Proof: Let ¢; and ¢, be recursive injections with recursively inseparable disjoint
ranges in the proof of Theorem 3.5. The functions f and g constructed in the

proof are the desired injections. [l

Corollary 3.7: Let f and g be recursive injections with recursive ranges. Then

there is & bijection A such that:
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i} h{m)==n implies f (m )==n or g(n)=m, and

it} The degree of & Is a, where a'! <0’ .
Proof: By Theorem 1.6, there is a model of WKLy in which every set is of degree
at most a, where a' <0' . By Theorem 3.5, given f and g, an appropriate & must

exist in this model.

One might ask if the existence of the ranges of f and g is truly necessary in
the proof of Theorem 3.5. Questions of this sort are easily answered in the frame-
work of reverse mathematics, as the following theorem indicates.

Theorem 3.8: (RCAy) The following are equivalent:

i) ACA,

i) Let f :N-+N and g:N--N be injections. Then there is a bijection,

f :N—N such that h (n)==m implies f (n)=m or g(m )=n.

iii) Let f :N—N and g:N—N be injections such that Ran(g } exists. Then

there is a bijection , & :N—N such that A(n)==m implies f {n)=m or

g (m)=n.

Proof: First note that ii} is a special case of the unbounded symmetric marriage
theorem. Thus, by Theorem 3.1, i) implies ). Furthermore, iii) is a restricted ver-
sion of i), so ii) implies iii). It remains to show that iii} implies i). By Theorem 1.4,
it suffices to use iii) to prove that the range of an arbitrary function ¢ exists. We

define injections [ and g as follows:

1) If n is not a power of a prime, [ {n)==g (n)=n.
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2) For each prime p, f (p)=g(p )=p>

Py if ¢ (m-2)==n

31 m>1, f (p) = pt if =i <m-2(c(f)=n)

{ p* L otherwise.

;0,,:"’"HL if 3j<m-2(c (7)=n)

22 N—
4 1f m>1, ¢ (pp") = pat otherwise.

The proofs that f and g are well defined injections are straightforward. Further-
more, Ran(g )={k eENN/m <kn <k(¢(m-2)==n - kz£p,)} , so Ran(g) exists.
Let h be the injection given by iii). Define X by X={n €N:k (p, }5%=p, }. Suppose
that ¢ (m)==n. Then p," is not in Ran(g), so & (p,")=/f (p,")=p, , and n €X. On

the other hand, if » is not in Ran(e), then p, is not in Ran(f ). Thus,
h(py )=g""p, )=p,, and n is not in X, B
Theorem 3.8 may also be converted into a recursion theory result.
Corollary 3.9: There are recursive injections f and g such that:
i) ¢ has a recursive range, and
ii) For any bijection h constructed from f and g, 0' is recursive in the degree
of h.
Proof: Let ¢ be a recursive function with 0 recursive in ifs range. The injections
constructed from ¢ in the proof of Theorem 3.8 are the desired ones. ]
This proof concludes our study of Banach’s theorem. We now turn to other

combinatorial applications of the marriage theorems.
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3.3. Graph Theory

This section contains proofs of the equivalence of several graph theoretic results
to subsyétems of second order arithmetic. A graph, G, consists of a set of vertices
V, and a set of edges, E. Each edge consists of a non-ordered pair of vertices, i.e.
EC[V]®. The graph G is bounded if there is a function h:V—V, such that
(v41,v9)€E implies h (vy)>vy. G=[XY] is bipartite if and only if there are disjoint
subsets X and Y of 'V such that if (@ ,y ) is an edge of G, then 2 €X and y €Y. For
bipartite graphs we will often abuse notation by treating an edge as an ordered pair,
the first component lying in X and the second in Y. A subset B! of E is said to be
incident to a subset X! of X (respectively Y' of Y) if every element of X! (Y’ )is
the endpoint of some edge in B . A subset E/ of I is independent if no two edges
of B share a common endpoint. The next two theorems are slight generalizations

on the symmetric marriage theorems.
Theorem 3.10 {RCA,} The following are equivalent:
i} ACA,.

i} (Ore’s Theorem) Let G==[X)Y] be a bipartite graph with edge set
BECXXY. Let XX CX and Y' CY. If there is an independent set 8 incident
to X! and an independent set T incident to Y’ , then there is an independent

set M incident to each of X' and Y' .
Proof: [First, we will assume ACA; and prove ii) If X' is finite, let
8" ={(z,y)eS:y €Y’ }, and take M=8" UT. A similar argument eliminates the
case where Y’ is finite. If both X' and Y' are infinite, set R=SUT. R satisfies

condition H,,,, and each vertex knows at most two other vertices. By Theorem 3.1,
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R has a symmetric solution, g. M=={(z,y):g (2 J=y } is the desired independent

set.

To prove that ii} implies 1), let G be the graph constructed as follows from the
injections [ and ¢ given in the proof of Theorem 3.8, Let
Be={{z,y )JENXN:{ (2 )=y \/yg (y)=2}. (Technically, we should use coding so
that T is the cartesian product of disjoint sets.) Set T=={(n,f (n))in €N} and
S={(g(n)n)neN}. Any M as given by i} defines the bijection needed in the
proof of Theorem 3.8. 1l
Theorem 3.11: (RCA,) The following are equivalent:

i) WKL,.

i) (Bounded Oure’s Theorem) Let G=={X,Y] be a bounded bipartite graph with

edge set ECXXY. Let X! CX and Y! CY. If there is an independent set S

incident to X' and an independent set T incident to Y' , then there is an

independent set M incident to each of X' and Y' . (This is identical to ii in

Theorem 3.10 except for the added hypothesis that G is bounded )

Proof: The proof of this theorem differs from the proof of Theorem 3.10 in only
two places. First, in proving that i) implies ii), Theorem 3.3 is used in place of
Theorem 3.1. Secondly, in proving that ii) implies i), the proof of Theorem 3.5 is

used in place of Theorem 3.8. B

So far, we have concerned ourselves with bipartite graphs. One feature of these
graphs is their lack of cycles of odd length. A eycle is a sequence of edges (1,7 1),
(Lgra) -+ (by,ry ), such that for all § <n, r;=l .1, and {;=r, . The length of

the cycle is simply the number of edges in the sequence. It can be proved in RCA,
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that every bipartite graph has no cycles of odd length. A well known theorem of
ordinary mathematics states that any graph which has no cycles of odd length is
bipartite. This can be proved for firite graphs in RCA,. However, the statement
cannot he proved in RCA, for arbitrary graphs, as is shown by the following
theorem. Two other notions are included in the statement of the following theorem.
A graph G is k-regular if for each z €V, the cardinality of the set {y €V:(x ,y )EE}
is precisely k. Intuitively, G is k-regular if each vertex has exactly k immediate
neighbors. The dual graph G of a graph G is the graph formed by treating each
edge of G as a vertex of G. Two vertices of G define an edge in G if and only if

their corresponding edges in G share an endpoint.
Theorem 3.12: (RCA;} The following are equivalent:

i) WKL,

ii) Every graph with no cycles of odd length is bipartite.

iii) The dual graph of a bipartite graph is bipartite.

iv) The dual graph of a 2-regular bipartite graph is bipartite.
Proof: First, we will prove i} in WKLyg. Since RCA, proves iij for finite graphs,
we may restrict attention to infinite graphs. Let G be a graph with no odd cycles,
and let Ve= < v, :¢ €EN> be an enumeration of its vertices. Let B be the edge set of
Q. Define the tree 'T' of sequences {rom Seqy as follows. Let ¢€T if and only if for
all i,5 <Ih{o), o(i )=0{j) implies (v;,v; )¢E. T is infinite, since RCA, proves ii)
for finite graphs. By WKLg, T has an infinite path. This path partitions the ver-

tices of G nto two parts as is required.
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It can easily be proved in RCA, that the dual graph of a bipartite graph has
no cycles of odd length. The existence of such a cycle immediately gives a cycle of
odd length in the original graph, contradicting the fact that it is bipartite. From
this, it is clear that i) implies iii}. Since iv) is a special case of iii), iii) implies iv). It
remains to show that iv) implies i).

Let G be the graph corresponding to a 2-society. G is bipartite; the vertices
consist of the set of boys and the set of girls. G is 2-regular since each person knows
exactly two other people. By iv), the dual graph G is bipartite. Let g be an
appropriate partition of the vertices of G. Let Ey and E; be the induced partition
on the edges of G. Both Ey and E; give symmetric solutions to the 2-society. By

Theorem 3.3, this suffices to prove WKL, I

We now turn to the existence of some node colorings of graphs. Let G be a
graph with vertex set V and edge set E. We say that [ :V—k isa k-coloring of G
it f always assigns different colors to the endpoints of an edge. That is, f is a k-
coloring if {2,y )€E implies f {2)s%f (y). If G has a k-coloring, then we say that
G is k-chromatic. Note that if G is k-chromatic, then G is j-chromatic for all 5 > % .
The following theorem contains several equivalent statements involving these

notions.
Theorem 3.13 (RCAgy) The following are equivalent:
i) WKLy
it) If every finite subset of a graph G is k-chromatic, {;h.en G is k-chromadtic.

iii) If every finite subset of a bounded graph G is 2-chromatic, then G is 2-

chromatic.

iv) Every 2-regular graph with no cycles of odd length is 2-chromatic.
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Proof: First we will prove that ii) is provable in WKL, Let G be a graph such
that every finite subgraph of G is k-chromatic. Let < v;:¢ €N> be an enumeration
of the vertices of G. Define the tree T of sequences from Seq; as follows. Let ¢&€T
if and only if f {v;)==0(¢) defines a k-coloring on the sﬁbgr&ph of G with vertex set
{v; 14 <Ih{o)}. Since every finite subgraph of G is k-chromatic, T is an infinite tree.
By Theorem 1.1, T has an infinite path. Such a path codes a k-coloring of T.

Since iil} is a special case of ii), ii) implies iii). Every 2-regular graph is
bounded, and a graph with no cycles of odd length has 2-chromatic finite subgraphs.
Thus iii) implies iv). It remains only to show that iv) implies i).

Let G be the dual graph constructed in the proof of Theorem 3.12. G is 2-
regular and has no odd eycles. By iv), G is 2-chromatic. Let f :V-—2 be a 2-
coloring of Gi. Then Vy=={v &V:J (v )==0} and Vi=={v €V:f (v )=1} define a par-
tition of the vertices of G which proves that G is bipartite. By Theorem 3.12, this
implies WKL;. i

In the previous theorem the conclusion that G has a 2-coloring is necessary to
obtain the reversal. Schmerl [43] has shown that RCAg proves that if every finite
subset of a bounded graph G is 2-chromatic, then G is 3-chromatic. His result is
actually phrased as a recursion theoretic theorem. The above theorem yields the fol-

lowing recursion theoretic corollaries. An edge k-coloring of G is simply a k-coloring

of the dual graph of G.

Corollary 3.14: Every k-chromatic recursive graph has a k-coloring of degree a

where a' <0 .
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Proof: Let G be a k-chromatic recursive graph. By Theorem 3.13 ii), G has a k-
coloring in any model of WKLg. By Theorem 1.6, there is an w-model of WKl in

which every set is of degree a where a' <0’ . |

Porism 3.15; There is a 2-regular recursive graph with a recursive 2-coloring but no
recursive edge 2-coloring.

Proof: Let ¢, and ¢, be recursive functions with recursively inseparable ranges.
Let G be the graph corresponding to the 2-society constructed from ¢y and ¢4 as in
the proof of Theorem 3.3. Since G is bipartite, it has a recursive 2-coloring; the ver-
tices can be separated by gender. However, G has no recursive edge 2-coloring, since
such a coloring yields a symmetric solution to the 2-society. B

Corollary 3.16: There is a 2-regular recursive graph with a recursive edge 2-

coloring but no recursive 2-coloring.
Proof: Use the dual of the graph in the proof of Porism 3.15. |

Corollary 3.17: There is a 2-regular recursive graph with no recursive 2-coloring

and no recursive edge 2-coloring.

Proof: Let G be the graph in the proof of Porism 3.15 and let G be its dual graph.
Form a graph H by letting the subgraph of H consisting of only the odd numbered
vertices be G, and that consisting of only the even numbered vertices be G'. His

the desired graph. [l

3.4. Partial Orders

This section contains several theorems relating WKL, to statements about paz-

tial orders. A partial order consists of a set P, together with a set of ordered pairs
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RCPXP. If (a,b)ER, then we write a <Pp . As a relation, R must be reflexive,
transitive, and antisymmetric. That is, for any ¢.,b, and ¢ in P, i) a _<_Pa, i1)
a <Pb and b <Fe¢ imply ¢« <¥c¢, and iii) a <Py and b <Pq imply a==b. A par-

tial order is often simply called P, when the relation R is clear.

Many of the results in this section concern comparability graphs. A graph G is
comparability graph if there is a partial order P such that (a ,b) is an edge of G i
and only if a <Pph or b <Fa. In this case we say that P satisfies G. It is easy to
show that RCA, proves that every partial order satisfies some comparability graph.
It is less easy, however, to decide whether or not a particular graph is a comparabil-

ity graph, as is shown by the following theorem.
Theorem 3.18: (RCA,) The following are equivalent:
i} WKL,

i} If every finite subgraph of G is a comparability graph, then G is a compara-

bility graph.
Proof: The proof of ii) for finite graphs is trivial. Assume i) and let G be an
infinite graph such that each of its finite subgraphs is a comparability graph. Let
Ve=<v;:i EN> be an enumeration of the vertices of G. Let T be a tree of finite
partial orders on subsets of V, such that ¢ is in the n'* level of T if and only if ¢
codes a partial order on vwyvg, . .., v, satisfying G restricted to vy,vg ..., Uy
T is ordered by inclusion. Since G is infinite, T is also infinite. Furthermore, it is

easy to arrange the coding used in T to insure that T is bounded. By Theorem 1.1,

T has an infinite path. Such a path clearly gives the desired partial order.
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The proof that ii) implies i) is even more simple. Let G be a 2-regular graph
with no cycles of odd length. Each finite subgraph of G Is a comparability graph.
To see this, separate a given finite subgraph inte its connected components. Within
each component, arbitrarily fix the ordering on one pair of connected vertices. Since
G is 2-regular, the rest of the ordering is completely determined by this choice. By
ii), G is a comparability graph, so there is some partial order P corresponding to G.
Let f be the function on the vertices of G given by:

i) f(v)=0if v <Pw where (v,w) is an edge of G,

i) f (v )==1 otherwise,

Since G is 2-regular, f is A in P. Since P contains no chains of length three, f is

5 2-coloring of G. By Theorem 3.13, this is equivalent to WKL, [l

A useful characterization of comparability graphs was given by Ghouild-Houri
[11], Gilmore, and Hoffman {12]. A g-cycle of a graph G is a finite sequence of ver-
tices vy,vq . . ., v, such that {(vy,v,) and (v;,v;,4) for i <n are edges of G. In
addition, for no vertices ¢ and b and integers ¢,j <{n is it the case that both
o =v;==v; and b==v; 1==0v; .y or that both a==v, y=v; and b=v,=v, A g
cycle is called odd if n is odd, and even if n is even. Finally, an edge is a triangular
chord for a g-cycle if it is of the form (v;,v; o) wWhere 1<¢ <n -2, or (v, _1,v4), o1

(v, ,v o). With this vocabulary we can characterize all finite comparability graphs.

Theorem 3.19: {RCAy) Let G be a finite graph. If G has no odd g-cycles without

griangular chords, then G is a comparability graph.

Proof: The proof of this theorem in RCA, amounts to a formalization of Gilmore

and Hoffman’s proof {12}, up to the application of Zorn’s Lemma. As is noted after
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the proof of Lemma 6 in {12}, this portion of the proof for infinite graphs suffices to

prove the statement for finite graphs. n

Although Gilmore and Hoffman’s proof make use of Zorn’s Lemma to extend
Theorem 3.19 to infinite graphs, the theorem can be extended to countable graphs
within WKLy Not surprisingly, this result also has a reversal, as is noted in the fol-

lowing theorem.
Theorem 3.20: (RCA,) The following are equivalent:
i} WKL
i} If G is a graph such that every odd g;cycie has a triangular chord, then G is
a comparability graph.
Proof: The proof that i) implies i) follows immediately from Theorem 3.18 and
Theorem 3.19. To prove that ii) implies i), it suffices to show that the graph used in

the proof of Theorem 3.18 has no odd g-cycles. Since every odd g-cycle contains an

odd cycle, this is clearly the case. [

The next three theorems relate versions of Dilworth’s theorem to RCA, and
WKL, For the statements of these theorems, 1t is useful to introduce the concepts
of height and width of partial orders. A partial order has width at most n if 1t con-
tains no antichains of length n +1. It has height at most n if it contains no chains

of length n +1. Throughout the following, a chain or antichain may be empty.

Theorem 3.21: (RCA,) Every finite partial order of width at most n can be parti-
tioned into n disjoint chains. Dually, every finite partial order of height at most n

can be partitioned into n disjoint antichains.
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Proof: The proof of the first statement is a straightforward formalization of the
usual proof of the finite Dilworth theorem (see [5] or [34]). The dual statement is
proved by induction on the cardinality of the partial order. If the cardinality is 1,
the statement is trivial. Suppose that the statement is true for partial orders of size
less than n. Let P be a partial order of size n and height at most k. Let
A;={z €P:/y EPy <z }, that is, A; is the set of minimal elements of P. Since P is
finite, the existence of this set is proved by RCA,. Clearly, A; is an antichain of
cardinality at least 1. Thus the partial order P-A; has size strictly less than n.
Furthermore, since every chain in P-A; has a proper extension in P, the height of
P-A, is at most k~1. By the induction hypothesis, P=A; can be partitioned into
k-1 disjoint antichains. Call these Ag Ay, . .., Ap. Then Aj A, ..., Ay is a par-

tition of P into & antichains. [

Theorem 3.21 also has a graph theoretic version. A graph is called complete if
every pair of vertices is connected by an edge. Complete subgraphs of comparability
graphs correspond to chains in any partial order satisfying them. Independent sets

of vertices correspond similarly to antichains.

Corollary 3.22: {RCA;) Let G be a finite comparability graph. If G contains no
set of k +1 independent vertices, then the vertices of G can be partitioned info &
sets, V1, Vy, ..., Vg, so that for each ¢ <k, G restricted to V; is complete.
Dually, if G contains no complete subgraphs on k-1 vertices, then G is k-

chromatic.

Proof: Let G be a finite comparability graph. Let P be a partial order satisfying

G. If G has no set of k41 independent vertices, then P has width at most . By
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Theorem 3.21, P can be partitioned into & disjoint chains. The subgraph of G asso-
ciated with each chain is complete. Similarly, if G contains no complete subgraphs
on k-1 vertices, then P has height at most k. By Theorem 3.21, P can be parti-
tioned into k disjoint antichains. The corresponding partition of the vertices of G is
a k-coloring. 1R

We will now examine Dilworth’s theorem for countable partial orders. Theorem
3.23 analyzes she basic Dilworth theorem, while Theorem 3.24 analyzes the dual
statement. To simplify the graph theoretic statements involved we will use the fol-
lowing abbreviation. A graph has property C if each of its finite subgraphs is a com-
parability graph. By Theorem 3.19, a graph has property C if and only if it has no

odd g-cycles without triangular chords.
Theorem 3.23: (RCA,) The following are equivalent:
1} WKL,
i} If G is a graph with property C and contains no set of k41 independent

vertices, then the vertices of G can be partitioned into k sets, Vi, Vy, .. ., 'V,

such that for each ¢ <k, G restricted to V; is complete.

iii) If G is a graph with property C and contains no set of three independent
vertices, then the vertices of G can be partitioned into two sets, V; and Vo,

such that for each 1 <2, G restricted to V; is complete.

iv) If P is a partial order of width at most n, then P can be partitioned into

7 chalns.

v) If P is 2 partial order of width 2, then P can be partitioned into two chains.
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Proof: Clearly, ii) implies iii) and iv) implies v). Since RCA, proves the existence
of comparability graphs for given partial orders, ii} implies iv) and iii) implies v). It
remains to show that i) implies ii) and v) implies i).

To prove that i) implies i), assume WKLq and let G be a graph with property
C having no set of k-+1 independent vertices. Let Ve=<lv;:i €N> be an enumera-
tion of the vertices of . Let T be the tree of appropriate partial partitions of 'V,
ordered by inclusion. That is, o is in the =  level of T if and only if o codes a par-
tition of {v;:1 <n } into at most k sets, V1, V,, .. ., V3, so that G restricted to V;
is complete for each ¢ <k. Choosing appropriate codings for T insures that T is
bounded. By Corollary 3.22, T is infinite. By Theorem 1.1, T has an infinite path,

which codes the desired partition of V.

By Theorem 1.2, to prove that v} implies i} it suflices to use v} to separate the
ranges of two functions. Let f and g be injections with disjoint ranges. We will
partially order the set P, where P consists of (codes for the elements of) the sets
{ny :n €N and 1<k <4}, {I; ,:J€{1,2} and & €N}, and {O}:k €N} The relation

on P is given by:
1) m; <Fmy if m <n or both m==n and j <k,
2) my <FI; it m<<f (k)
3) I » <Pn, it f(k)<n.
4) n,<PL, <Pugond ny<Ply,, <Fngif [ (m)=n.

5) m; <FO, if m<g(k)
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6) O; <Fmy if g(i)<m.

7} m,<FO, <Fmyif g (k)=m.

It is straightforward to verify that P together with the ordering <P is a partial
order of width 2. Let Cy and C, be a partition of P into two chains. For all n €N,
if n€Ran(f ), then exactly one of ny€C; and nzEC hold. If n €Ran(g), then
{ngngtCCy or {ngnziNCy==0. Thus, {n EN: exactly one of nyand nyis in O}
contains Ran{/ ) and is disjoint from Ran(g ). |l
Theorem 3.24: (RCA,) The following are equivalent:

i} WKL,

it} If G is a graph with property C and contains no complete subgraph on &k +1

vertices then G is k -chromatic.
i) If G is a graph with property C and contains no triangles, then G is 2-
chromatic.

iv) If P is a partial order of height at most n, then P can be partitioned into

n antichains.

v} If P is partial order of height 2, then P can be partitioned into two
antichains.
Proof: Clearly ii) implies iil) and iv) implies v). Since RCAq proves the existence
of comparability graphs for given partial orders, i) implies iv) and iil) implies v).
The proof of i} implies ii) follows immediately from Corollary 3.22 and Theorem 3.13.
It remains to show that v) implies i). By Theorem 1.2, it suffices to use v} to

prove the existence of a set separating the ranges of two functions. Let f and g be
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injections with disjoint ranges. We will partially order the set P, where P consists of
(codes for) the elements of the sets {I,:n €N}, {O,:n €N}, and N. The partial
order on P is defined by:

1) 0, <L, forall n,m.

2) O, <Fjif =t <n g(t)=y.

3) §<PI, it Jt<n f(t)=j.
It is straightforward to verify that P together with <¥ is a partial order of height 2.
Let A, and A, partition P into two antichains. Without loss of generality, let
O.€A,;. Then {I,:n eN}CA,, so {O,:nEN}CA,;. From this we can see that if
n€Ran(f ), then n€A,, and if n€Ran(g), then n€A; Thus, NNA, is the
desired separating set. |

This section concludes with an assortment of recursion theoretic porisms and
corollaries following from the preceding theorems.
Porism 3.25: There is a highly recursive comparability graph which is not the com-
parability graph for any recursive partial order.
Proof: Use the graph from Porism 3.16. I
Corollary 3.26: Every recursive comparability graph is the comparability graph of
a partial order of degree a, where a' <0' .
Proof: Let G be a recursive comparability graph. By Theorem 3.18, G is a com-
parability graph in any w-model of WKL By Theorem 1.6, there is an w-model of

WKL, whose set universe consists only of sets of low degree. I
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Porism 3.27: There is a recursive partial order of width 2 which cannot be parti-

tioned into two recursive chains.

Proof: In the proof of Theorem 3.23, let [ and g be recursive functions with

recursively inseparable ranges. N

Kierstead [23] has constructed a recursive partial order of width 2 which cannot
be partitioned into four recursive chains. This recursive counterexample is consider-
ably more involved than the construection of Theorem 3.23, and may or may not gen-
eralize to a reversal, as increasing the number of allowable chains can reduce their
complexity. For example, Kierstead has shown that any recursive partial order of

width 2 can be partitioned into six recursive chains.

Corollary 3.28: Every recursive partial order of width at most n can be parti-
tioned into n chains of degree a; for 1<<i <n, such that for each 7, al <0 .

Proof: Let P be a recursive partial order of width at most = . By Theorem 3.23, P
can be partitioned into n chaias in any w-model of WKL, By Theorem 1.6, there

is an w-model of WKLg whose set universe consists only of sets of low degree.

Porism 3.20: There is a recursive partial order of height 2 which cannot be parti-
tioned into two recursive antichains. Furthermore, any recursive partial order of
height n can be partitioned into n antichains of degree a; for 1<i¢ <n, such that
for each 7, al <0' .

Proof: Similar to the proofs of Corollary 3.27 and Porism 3.28 except for the use of

Theorem 3.24.
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3.5. Rado’s Selection Principle

In this section, we will consider several versions of Rado’s selection principle.
This theorem resembles a marriage theorem in that it asserts the existence of a
choice function for a family of finite subsets. A function f :I—E is a choice function
for a family of non-empty subsets of a base set B indexed by I if for each i€l, f (7}
is an element of the set with index 7. For countable families of finite sets, we can
further specify the nature of the choice function. Since all the results of this section
concern such countable families, we will always use IN as both the index set and the

base set.

The variants of the selection principle listed below are the result of two factors.
First, although the usual statement of the selection principle involves arbitrary finite
subsets of the index set, it is sufficient to consider only initial segments of N. The
second factor is the availability of $wo reasonable codings for families of finite sets.
We say that a set of ordered pairs A codes a family of finite subsets of N if for each
i, the set of j’s such that (¢, )€A is finite. The intuitive meaning of (i,7)EA is
that § is an element of the i™ gubset. On the other hand, we may code a family of
finite subsets of N by a sequence of integers, C==<C¢; :i EN>, where ¢; is the code
for the ¢ finite set. Thus each ¢; is an element of P .n(IN), the set of all codes for
finite subsets of N. When n is a,nl element of the set coded by ¢;, we will write
n€X, . This statement is actually a &4 formula without set parameters. Although
the ordered pair representation of a family of set is AL in the finite set representa-
tion, the converse relation does not hold. Thus, in RCA,, we must explicitly state
which representation is used. Oddly enough, in this section the choice of representa-

tion makes no difference, but this takes some proof.
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The following theorem was first proved by Q. Feng and S. Simpson.
Theorem 3.30: {RCA,) The following are equivalent:
i) ACA,

ii) Let A be a set of ordered pairs coding a family of non-empty finite subsets
of N. Let F==<f,;:i€N> be a sequence of finite functions such that
Dom(f; }={j EN:j <i}, and for 7 <i€N, {j,f;(7))EA. Then there is a
choice function f , such that for each m €N, there is an n >m such that for
all t <<m, f (t)=f,(t)

i) Let C==<¢;:t EN> be a sequence of codes for non-empty finite subsets of
N. Let F=<«<f,:i€N> be a sequence of finite functions such that
Dom({f;)={j€N:j <i}, and for j<z€N, fi(j)GXci. Then there is a
choice furction f such that for each m €N, there is ar n >m such that for all
t<m, [ (8)=1n(t).

iv) (Rado’s Selection Principle) Let A be a set of ordered pairs coding a family
of non-empty finite subsets of N. Let F={f,:t €P .n(N}} be a set of finite
functions such that Dom(f,)=X,, and for all tEP (N} and €X,,
(¢ ,f:(1))EA. Then there is a choice function f such that for each
s €EP (N, there is a t€P (N) such that X, CX, and for all {€X,,
fo(é)=1 (&).

v) Let C==<¢;:i EN> be a sequence of codes for non-empty finite subsets of

N. Let F={f,:t €P . {N)} be a set of finite functions such that for all
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teP _n(N), Dom{f, )=X,, and for all 1€X,, f. )EX%. Then there is a
choice function f such that for each s €P (N} there is a t EP o (N} such
that X, CX, and for all i €X,, [ (i)=f (i).
Proof: By the previous comments concerning coding of families of finite sets, it is
clear that ii) implies iii), and iv) implies v). Since every finite subset of N is con-
tained in some initial segment, it is easy to show that ii) implies iv), and i) implies
v). We will complete the proof by showing that i) implies ii), and v) implies ).
To show that i) implies ii), assume ACA, and let A and F be as in i), We

define a tree TCSeqon by:

e€T if and only if Vi <1h(e) =7 Wt <i (ot )=1;{t)}
T is %0 in F, so ACA, proves the existence of T. Since F is infinite, so is T.
Furthermore, since {j EN:(d,7)EA} is finite for each 7, and f,(i)=; implies
(¢,7)€A;, T is finitely branching. By Theorem 1.3, we may apply Konig’s lemma
to T. The resulting infinite path is the desired choice funection.

By Theorem 1.4, to show that v) implies 1), it suffices to use v) to define the
range of an injection g. Let C=<I¢; 4 EN> be the sequence given by Xciw{o,l}
for all 1 EN. For t €P on(N), we define f; for i €X, by:

7. (i)=1if and only if Jk <max(X,;) g (k)=
Thus Fe=={f, £ €P (N} is Al in g, so F exists. Let f be the choice function
guaranteed by v). If g(t)=¢, then for some k  such that {¢,i}CX,,
fli)=Fli)=1. I i¢Ran(g), then for every & EPN(N}, i ¢€Xy, then

£4(i)=0, and so f (i)==0. Thus Ran(g)={n€N:f (n}=1}. ]
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The preceding theorem can be modified by introducing a bounding function.
The bounding function weakens the selection principle by reducing the variabion

among the local choice functions. The resulting statements are equivalent to WKLy,
Theorem 3.31: (RCA,) The following are equivalent:
i) WKL,
i) Let A be a set of ordered pairs coding 2 family of non-empty finite subsets
of N. Let F==<f,:i€N> be a sequence of finite functions such that
Dom(f; )=={jEN:j <i }, and for j </ €N, (7,.7:(7))€A. Let k be a bound-
ing function such that for all ¢,7 EN, there is a k <C/ (¢ ) such that for all ¢ <7,

Ji{t)=F(t). Then there is a choice function f , such that for each m EN,

there is an n >m such that for all £ <m, f (t)=F,{t).

iil) Let Ce==<c;:1€N> be a sequence of codes for non-empty finite subsets of
N. Let F=<f,:i€N> be a sequence of finite functions such that
Dom(f; )={j€N:j <1}, and for j <i€N, fi(j)Ech. Let & be a bound-
ing function such that for all ¢,7 €N, there is a k <<h (i) such that for all { <<z,
fi{t)=Fp(t). Then there is a choice function f such that for each m €N,

there is an n >>m such that for all ¢ <, f (£)==[,{¢).

iv) (Weak Rado’s Selection Principle) Let A be a set of ordered pairs coding &
family of non-empty finite subsets of N. Let F={f,:¢ €P n(N)} be a set of
finite functions such that Dom(f,}=X,, and for all {€P .n(N) and i€X,,
(i,f,(1))EA. Let h be a bounding function such that for all s,t €P n(N)
with X, CX,, there is a u <h{s) such that X CX, and for all 71€X,,

f.{i)=f,(¢). Then there is a choice function f such that for each
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s €EP N(N), there is a {EP (N) such that X, CX, and for all 1€X,,

Foli)=r ().

v) Let C==<I¢;:1 EN> be a sequence of codes for non-empty finite subsets of

N. Let F={f,:t€P n(IN)} be a set of finite functions such that for all

t €P «n(N), Dom(f, )=X;, and for all 1 €X,, f, (4 )GXci. Let & be a bound-

ing function such that for all s,t P  N(N) with X, CX,, there is a u <h(s)

such that X, CX, and for all i€X,, f;(¢)=[,(7}). Then there is a choice
function f such that for each s EP . n(N) there is a ¢ €P  o(IN) such that

X, CX, and forall 1 €X,, [ (¢ )}=f (¢).

Proof: As in the proof of Theorem 3.30, ii) implies iii), iv) implies v), ii) implies iv},
and ii) implies v} are straightforward.

The proof that i) implies ii) is essentially the same as in Theorem 3.30. We will
point out where the function h is of importance. First, 2~ bounds the existential
quantifier in the definition of T, so T is %o in F. Thus RCA, suffices to prove the
existence of T. Next, there is a function ¢ which is AP in h such that for o€T,
o(i)==j implies j <g(¢). It is noteworthy that (i,7 )EA does not necessarily imply
that 7 <<g{i), so although g provides the needed bound on T, it says very little
about A. The existence of ¢ allows the use of Theorem 1.1 to find the desired path

through T.

The proof that v) implies i) is necessarily different from that of Theorem 3.30.
This part of the proof also serves to link the selection principle directly to a marriage
theorem. Let R be an infinite marriage problem with bounding function A, set of

boys B (identified with N}, and set of girls G. Suppose that every boy knows
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finitely many girls and that R satisfies condition H. We will use v) to find a solution
to this marriage problem. Let C=<¢ 4EN> be the sequence given Dy
.ch:{g {b,g )R} Cis Al in R and h. Let t €P n(IN) and <b; i be an

increasing enumeration of the elements of X,. We define f; by the following:

1) If by is the j % hoy who knows some girl whose address is greater than

h(b;) for all ¢ <k, and the marriage problem restricted to {b;:1 <k} has at

least j solutions, then <[ (b;)>>;<p I8 the 7% solution (in the lexicographi-

cal ordering) and f,(by) is the least n such that n >h (b;) for all 1 <k and

(b ,n JER.

2) In any other case, </, (b;)>>; <« is the (lexicographically) least solution to

the marriage problem restricted to {b; ¢ <k I3
The above definition, convoluted as it is, serves two purposes. First, it insures that
Fe=< [, €P (N)> is AL in R and h. Secondly, it makes sure ti&at every solu-
tion to a subset of the marriage problem is included in F by some easily discernible
point. In particular, there is 2 function & which is AL in b and R such that for any
s and ¢ in P<N(N), if X, CX;, then it is possible to find a k <k (¢} such that
VieX, [y (¢)==f ().

Applying v) to C, I, and i yields a choice function f . Since every local
choice function f, is an injection, so is [ . Thus f is a solution to the marriage

problem. By Theorem 2.3, this suffices to prove i). B

The previous theorems have many recursion theoretic implications. The follow-

ing three results are characteristic.
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Porism 3.32: There are recursive sets A and F satisfying the hypotheses of
Theorem 3.30 v) such that O/ is recursive in any choice function satisfying the con-

clusion of Theorem 3.30 v).

Proof: In the proof of v) implies i} for Theorem 3.30, take ¢ to be any recursive

injection with 0/ recursive in its range. [l

Porism 3.33: There are recursive sets F and A and a recursive function i satisfy-
ing the hypotheses of Theorem 3.31 v), such that no function f satisfying the con-
clusion of Theorem 3.31 v) can be expressed as a finite Boolean combination of recur-

sively enumerable sets. In particular, no such f is recursive.

Proof: In the proof of v) implies i) for Theorem 3.31, use the recursively bounded

recursive marriage problem of Porism 2.7. ]

Corollary 3.34: For any recursive sets F' and A and recursive function A satislying
the hypotheses of Theorem 3.31 ii), there is a function f satisfying the conclusion of

Theorem 3.31 ii) which has degree a, where a’ <0 .

Proof: By Theorem 3.31, such an [ exists in any w-model of WKL, By Theorem

1.6, there is an wmodel of WKL, whose set universe consists only of sets of low

degree. K



CHAPTER 4

BOOLEAN RINGS

This chapter explores various aspects of countable Boolean rings. Although this
topic appears to be purely algebraic, it is linked to combinatorics. For instance,
Boolean rings are used in the algebraic version of Hindman’s theorem presented in

Chapter 7.

Although every Boolean algebra is a Boolean ring, the development here is not &
frivolous generalization. As will be seen in Chapter 7, the most natural algebraic
reformulation of Hindman’s theorem is in terms of rings, not algebras. Furthermore,
certain Boolean rings without identities can be represented as rings of finite sets.

Such rings have a particularly revealing representation, as is shown in Theorem 4.10.

4,1, Basic Facts

In this section, we will define Boolean rings and prove a few basic facts.
Throughout this chapter, we will use the term Boolean ring to refer to a countable
Boolean ring. Note that the following definition does not require the ring to have a
multiplicative identity. Indeed, it is easy to show in RCA, that any Boolean ring
with a multiplicative identity is a Boolean algebra. (By Boolean algebra, we mean a
structure where addition corresponds to symmetric difference, not to anion. Both

axiomatizations are common in the literature.)

Definition 4.1: A (countable) Boolean ring consists of a set of elements, R, and

two operations (coded as sets of triples) denoted by + and * such that

52
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i) <R,+> is an abelian group with designated identity, 0.

i) <R,*> is asemigroup.

iit) The distributive laws, ax(b+c)=(axb)}+(axc) and
(b4c)x a==(bxa){c*a) hold for all ¢ ,b,c ER.

iv) Every element is a multiplicative idempotent, i.e. ¥r ER(r  r==r}.

Some interesting properties of Boolean rings follow immediately from the

definition.
Lemma 4.2: (RCA,) Let <R,+,x > be a Boolean ring. Then:
i} R has characteristic 2, i.e. \/r (r +r ==0), and
ii) R is commutative, i.e. \/r /s (r«s=s%71).
Proof: To prove i), fix r ER. Then
rodr == 4 s (7 1)
G- FUNG JUE JEPS
S e o
Since <R,+>> is a group, O==r +r.
To prove ii), fix » ,s ER. Then
r 45 =={r 48 )k (r +s)
ey (5w JH{r « 8 )+s 2

m=p (5 % 7 ) H(r % 5 )+s

So, O==(s % 7 )4-(r x5 ). Adding r«s to both sides and applying i) yields the desired

result. i
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4.2. Atoms

An element r of a Boolean ring R is called an atom if for every s€R,
r=s&{0,r }. Much of the structure of a Boolean ring can be determined by looking
at its atoms. Under certain circumsbances, it is comparatively easy to find the atoms
of a Boolean ring. The following definition gives a representation of some Boolean

rings with very simple sets of atoms.

Definition 4.3: (RCA,) Let R be a set of {codes for) finite sets which is closed
under intersection and symmetric difference. R.together with the operations + (sym-

metric difference) and # (intersection) is called a Boolean ring of finite sets.

Given a Boolean ring of finite sets, it is a simple matter to find all the atoms.
The following lemma and its corollary indicate this.
Lemma 4.4: (RCA,) Let R be a Boolean ring of finite sets. The set of all atoms of

R exists.

Proof: Let R be a Boolean ring of finite sets. For a code ¢ €R, let X, denote the
set coded by f. We assume a coding where X, CX, implies £ <s. The set of

atoms of R is defined by

A={t eR:Ys <t (X, CX, —s ¢R}}.
Since A is A in R, A exists. |l
Corollary 4.5: If R is a recursive Boolean ring of finite sets, then the set of atoms
of R is recursive.
Proof: Let <w Rec> denote the standard minimal model of RCA,. If R is recur-
sive, then R is in «<wRec>, so by Lemma 4.4, the set of atoms of R is in

<w Rec>. Thus the set of atoms is recursive. ]
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For the general case, it takes ACA, to prove the existence of the set of atoms.

The following theorem of reverse mathematics confirms this.
Theorem 4.6: (RCAy) The following are equivalent.

i) ACA,.

ii) If R is a Boolean ring, then the set of all atoms of R exists.

iii) If R is a Boolean ring with infinitely many atoms, then an infinite subset of

the atoms exists.

Proof: To prove that i) implies ii}, let <Ir; >en be an enumeration of the Boolean

ring R. The set of atoms of R is defined by
AF{?‘,: ERV_] (T'a' * ?'j E{?‘.,’ ,O})}
Since A is Hlo in R, ACA, proves the existence of A

Since iii) follows immediately from ii), it remains only to show that i) implies
i}, Let f :IN—N be a total 1-~1 function. By Theorem 1.4, it suffices to use 1ii) to
show that the range of f exists. This can be done in three steps. First, we must
construct the appropriate Boolean ring R. Secondly, we must prove that R is indeed
a Boolean ring with infinitely many atoms. Thirdly, given an arbitrary infinite sub-

set of the atoms of R, we must somehow decode the range of f .

The construction of R is necessarily somewhat messy. Intuitively, R is 2
Tychonoff product of infinitely many finite Boolean algebras. The structure of the
n™ Boolean algebra codes all the information needed to retrieve Ran{f JN(n +1).

Thus each element of the n h Boolean algebra is a triple giving the number of the
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Boolean algebra, information about f , and a set representing the element. Let S
denote the elements of the finite Boolean algebras. Formally, SCNXNXP n(N)

and (n ,k X)€S if and only if the following four conditions hold.
1) 7 (k)<n.
2) $£XC{0,1,...,2" -1}
3) If ¢ =|{y <n:Tz <kf (z)=y}|, then for some JC{O,1, ..., 2¢-11},

Xe={m <2" =] €] m==j mod 201y,

4) If ¢ is as in 8) and ¢ >1, then for all d such that 1<d <¢, there is no
JC{o1, ..., 2% 1} such that
Xe=={m <2":=j €J m=7 mod 2¢-11,
Intuitively, for each n and &, {#JU{XC2" 7 <k(n,;,X)ES } defines a subalge-
bra of 2" elements. Condition 1) insures proper coding of the information about f .
Conditions 2) and 3) guarantee that at each stage k, a subalgebra is constructed.
Condition 4) prevents any element of the n' algebra from being associated with

several values for k.

The underlying set for the Boolean ring R is easily defined in terms of S. For
all YEP _(S), YER if and only if for all distinet (ny,k X)) and (ng,k9,Xe) in Y,
ny5%ny R can be viewed as the seb of functions with finite support mapping N into

the direct product of the finite algebras.

The operations on R are carried out component-wise in terms of the finite alge-
bras. If (n,k1,X;) and (n,k4,X,) are elements of 8 with identical first components

such that X;MX,748, then
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(n :‘l"' I:XI)* (n J{" Q:XQ)”"T(W :j xXIHXZ)
where 7 is given by
J=pt S max (k 1,k2)((ﬂ 7 >XEOX2)€S)

A close examination of the definision of S reveals that such a § always exists. Addi-

tion is defined using symmetric difference, that is, if X, v X7, then
(n k1, X+ (n ko Xg)=(n 5 XyvXy),
where 7 is given by
j=pt < max (kyko)((n, i Xy vX)ES).
Again, such a j always exists. If X, X,=0 (vespectively X;vXy==) then the pro-

duct (respectively sum) is undefined in the sense shat {(n k1 X)x (n ko Xg)t=0

(respectively {(n k1, Xy)+(n ko, Xo)}=0).
Now we can define the operations on R. Let Y,ZeR, and let
m = max {n EN: Tt X (n ¢ X)EYUZ} .

For each n <m, let Y, (respectively 7. ) denote the singleton set containing the
element of Y (respectively Z) with first component 7, if such an element exists, and
0 otherwise. If Y, 48, write Y,={y} and similarly, write Z,={z} if Z,%0.

Define addition in R by

Y+Z= | (Y, +Z, )
n <

m

where + is defined by
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{y 4z} if YD N\ZHAD,
Yy Ly, :{Yn UZ, otherwise.

Define multiplication in R by

where % is defined by

Y.z, ﬁ{{y « 2} it Y£BN\Z54D,

# otherwise.

Since y,z €S, these functions are well defined. It is straightforward but tedious to

show that R and its operations are A definable in f .

Next we need to show that R together with + and % is a Boolean ring with
infinitely many atoms. For the most part, this is left to the ambitious reader. It is
clear that it is sullicient to prove that the operations act appropriately on each com-
ponent. Once one accepts that the bookkeeping components in each tripie behave
nicely, this is simply a verification that the finite subalgebras of the form
{Xca® =t (n ¢t X)eSjU{#} are Boolean vings. Furthermore, it is clear that any
atom consists of exactly one triple from 8. An element (n b ,X)€S is (the sole ele-
ment of) an atom if and only if Wt>kf (¢t)>n, and for some i<t
X={j <2":j =1 mod 2°7'} where ¢ =] {y <nHaf (z)=y}.

The simple nature of the atoms of R makes the final step of the proofl easy.
Let ACR be an infinite subset of the atoms of R. Since there are only a finite
number of atoms with any fixed first component, we can find a sequence
< a; >;enGA such thab for each ¢, ¢ e=(n; k; X; ) and n; >4. Since each ¢; is an

atom, /'t >k (f (¢)>n;) for each ¢ €N. Thus for each i €N, i €Ran(f ) if and
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only if =t <k;{f (¢)=¢). By AL comprehension, if an infinite subset of the atoms
of R exists, then so does Ran(f ), as desired.

The following Porism points out a facet of the proof of Theorem 4.6 which will

be used in the next section.
Porism 4.7: (RCA,) The following are equivalent.
1) ACA,.

ii) If R is a Boolean ring with infinitely many atoms such that each element

can be expressed as a finite sum of atoms, then the set of atoms of R exists.

Proof: The Boolean ring constructed in the proof of Theorem 4.6 satisfies the

hypothesis of il).

4.3. Versionsg of Stone’s Theorem

In this section we will examine two versions of Stone’s representation theoremn.
Although both statements are easily proven in ACA,, no reversals have been found.

The statement of the first version uses the following definition.

Definition 4.8: (RCA,) A Boolean ring of sets consists of a sequence < f; >;en of
0-1 funetions which is closed under % and +, where these operations are defined as

follows:

Lif fi(k)s4S (k)
Lo (fi+f k)= 0 otherwise

2. (fexfj)h)==F (k)= f (k)

fituitively, the functions are characteristic functions of sets in the Boolean ring.

The operations + and % correspond 0 symmetric difference and intersection, respec-
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tively. Ideally, we would now prove that every Boolean. ring is isomorphic to a
Boolean ring of sets. Unfortunately, no proof of this statement in a subsystem of Zy
is known. We can, however, prove the result for atomic Boolean rings. An atomic

Boolean ring is one in which every element contains an atom.

Theorem 4.9: (ACA,) Every atomic Boolean ring is isomorphic to a Boolean ring

of sets.

Proof: The proof consists of mapping each element of the Boolean ring to its set of
atoms. Let < #; >;en be an enumeration of the atomic Boolean ring. By Theorem
4.6, we can find an enumeration <(a; >;eN of the atoms of R. The sequence of

functions < f; >;en is defined by

1if % aj=a;
I (j)m{() otherwise.
It is easy to verify that ¢y —f; is an isomorphism of R onto the Boolean ring of
sets <<f; >ien |
As was observed in the previous section, some Boolean rings have a more tract-
able representation. In general, it is much easier to work with Boolean rings of finite
sets than with Boolean rings of sets. The following theorem characterizes those

Boolean rings which are isomorphic to Boolean rings of finite sets. Furthermore, it

gives a weak version of Stone’s theorem which is equivalent to ACA,.
Theorem 4.10: {RCA,) The following are equivalent:
i) ACA,.

i) A Boolean ring R is isomorphic to a Boolean ring of finite sets if and only if

every element of R can be expressed as a finite sum of atoms.
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Proof: To prove that i) implies i), first let R==<{r; >;n be an enumeration of a
Boolean ring in which every element can be expressed as a finite sum of atoms. By
Theorem 4.6, we can find an enumeration <(a; >;en of the atoms of R. Define
S==<ls; >, N bY letting s; be the code for the set {7 €N:r; » a;=a; }. Clearly, S is

a Boolean ring of finite sets, and ¢(r; }==s; is an isomorphism of R onto S.

To complete the proof that i) implies i), suppose that ¢ is an isomorphism of R
onto a Boolean ring of finite sets 8. Fix r ER. Let s €S be the image of r under ¢,
and let ¢(ay), . .., #(a,) be the atoms of 8 contained in (the set coded by) s.
Since s is finite and 8 is closed under symmetric difference, s ==¢{a )+ - - - +¢(a, ).
Since ¢ is an isomorphism, r ==a¢;+ - - - +a, is a decomposition of r into finitely
many atoms.

To prove that ii) implies i), let R be a Boolean ring with infinitely many atoms,
such that every element can be expressed as a finite sum of atoms. By i), R is iso-

morphic to a Boolean ring of finite sets. By Lemma 4.4, the set of all atoms of R

exists. By Porism 4.7, this implies ACA,.

4.4. Zero Divisors

The following three lemmas are needed to prove the results on Hindman’s
theorem presented in Chapter 7. They all concern the existence of sequences of pair-
wise zero divisors in Boolean rings.

Lemma 4.11: (RCA,) Let R be an infinite Boolean ring of finite sets. Then there

is a sequence <z >;en of elements of R which are distinct pairwise zero divisors.
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Proof: lLet < r; >;on be an enumeration of a subset of R such that + <{j implies
max (r; )< max (r; ). Since R is an infinite collection of finite sets, by 157, such a

sequence exists. Define z for ¢ €N by

Z; w?"g”{“ E g% &g
k<i

Since k <¢ implies max {r, )< max (r;), r;5% Y r;x 2z, so for each 7, z750.
k<

Furthermore, if z * z; =0 for all ¢,7 <k such that 17, then

zj*zkmzj*(rk+2rk*zi)
i<k

mzj* i 4"*25:,'2* T’k+ E r;c*zi*zj
i<k ish]

ﬁi?,’j * I +2’J,;2=i< L
=k Tf +Zj* L

==,

So by IN, <z >;en I8 a sequence of distinet zero divisors. B

Lemma 4.12: (RCA,) Let R be an infinite Boolean ring with finitely many atoms

<a; >;<n- Then R contains an inlinite sequence of distinct pairwise zero divisors.

Proof: Let <r; >; <N be an enumeration without repetitions of the elements of R.

Let t; ==r;+ ¥ r;» a; for all ¢€N. Then for any j<n and any ¢ €N, §x a;=0.
iEn

Let <<u; >;en be an enumeration without repetitions of the f; such that £0.
There are infinitely many ;. Let v,=u,. Suppose that v; is defined for all j <k.
Define vg4; DY U 1==vg* 4,, where n==pj (v % u; €{v; ,0}). Such a j always

exists by definition of u; and the fact that there are only finitely many atoms. Note
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that if § <k, vj* vp==v;. Finally, define <2 >;en by #;=v;+v;4q. Note that

for 7 <k,

2y % zp ={v; +0; wa) (v +vg 1)
w_-—ﬁij * U +U}' 41% V. _I"Uj * U -H.—i_vj 1% Vg 41
== U+, 1V 41

=0,

Since % is commutative in R, this suffices to show that z; x # ==0 for all j k€N
such that 754k .
Corollary 4.13: {ACA,) Let R be an infinite Boolean ring. Then there is an

infinite sequence of pairwise zero divisors in R.

Proof: If R has finitely many atoms, then apply Lemma 4.12. If R has infinitely
many atoms, then by Theorem 4.6, the set of atoms exists. Such a set of atoms is a

set of pairwise zero divisors. B



CHAPTER 5

MODELS OF SUBSYSTEMS OF Z,

Several interesting combinatorial results can be proved using model theoretic
techniques. This chapter develops the basic tools necessary to carry out these proofs.
The proofs and definitions of this chapter differ from those in other chapters in that
they are not formulated in the language of Zy. The approach taken here is wildly
different from that of constructive or recursive mathematics. The fact that some set

theory is necessary to prove results does not inhibit our use of them.

The main techniques developed in this chapter involve the careful exploitation
of the interplay between models of first and second order arithmetic. Several nota-
tional conventions simplify the presentation. The language of second order arith-
metic is denoted by Lo, while the restriction of this language to first order arithmetic
is denoted by L. Thus, Ly is Ly stripped of €, set variables, and set gquantifiers.
Models of second order arithmetic are denoted by upper case Greek letters, while
upper case Roman letters denote models of first order theories. Models and their

domains are generally denoted by the same symbol.

It is important to note that fragments of Zy can be viewed as two sorfed first
order theories. Consequently, standard model theoretic definitions and results apply
to models of fragments of Z,. In particular, the definitions of isomorphism and ele-
mentary equivalence of models is as usual, and the downward Lowenheim Skolem

theorem can be applied.

64
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A model of a fragment of Z, consists of a pair ['==<Np,Sp>, together with the
interpretations of the relation, constant, and function symbols. Here Np is the
domain for the number variables, and SpCP{Ny) is the domain of the set variables.
We uniformly use Np and Sp to denote the domains of a model I', and omit specific
mention of the interpretations of relation, function, and constant symbols when they
ave clear. The model of first order arithmetic consisting of Np together with the
interpretations of the first order constants, relations, and functions is called the first
order part of I'. For example, the first order part of any model of ACA, is a model

of the first order Peano axioms.

The first order Peano axioms, denoted PA, consist of the first order basic
axioms, denoted P~ together with the induction scheme for all purely first order for-
mulas. We often consider fragments of this theory created by restricting the indue-
tion scheme to formulas of fixed complexity, for example Ly formulas of L;. The fol-
lowing terminology is essentially that of Kirby and Paris [26]. Let M be a model of 2
fragment of PA. We write IC, M if Tis a proper initial segment of M. If a €M
and a €1, we write a >L T B isa subset of I, an element ¢ €M codes B if for any
a€l, ¢ €B if and only if M models the formula stating that the o™ prime divides

¢. The set of all subsets of I coded by elements of M is denoted by Ryl

We will use the following hierarchies of collection schemas outlined by Kirby

and Paris [27]. The scheme IX, (Z, induction) consists of the universal closures of

(00)AY= (8(w )=z +1)))— V= (2 )
where 0 is 3 &, formula of L. The scheme BE, (&, collection) consists of the

universal closures of
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o <y Tz bz 2 )—=t Yo <y —le <t 0z ,2)

where ¢ is 2 &, formula of Lj. The scheme LY, (2, least number principle) con-

sists of the universal closures of

S 8z )~ (002 )Yy <z 8y ))
for all %, formulas of Ly, The schemas 111, , BIl, , and LIl, are defined similarly.
We will denote expansions of the schemas o include T2 (respectively 1Y) formulas
of Ly by IT), BT, and L (respectively IIL0, BIL?, and LII)). The following

theorem concerning these schemas was proved by Kirby and Paris [27].
Theorem 5.1: Let n >0. Suppose that MEP 415, Then the following hold:

) MEID, iff Mp=1T1, i MLE, if MELIL, .

i) ME=BE, 4 iff MpE=BII, .

iif) ME=IS, implies MBI, .

iv) MF=BL, 4, implies ME=I5, .

The proof of the preceding theorem is easily modified to prove the correspond-
ing result for second order models and collection schemas.

The following terminology for initial segments of models of 1, is widely used.
An initial segment I is semi-regular in M if <I,RMI>lmIEfJ. An initial segment I is
regular in M if <I,RMI>FB§320. An initial segment I is strong in M if 1 is semi-
regular, and for every coded coloring of triples with two colors, there is a coded set

cofinal in T which is monochromatic in the sense of Ramsey’s theorem.

With this terminology and background in hand, we are prepared fo begin our

study of model theory.
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5.1. Clones

The cornerstone of the development of model theory in this chapter is the
notion of a clone. Two facts capture the essence of clones. First, a clone is simply a
model of some second order theory. Secondly, the interesting aspect of a clone is the
way in which it is built. A clone is always grown from a cut in a model of a first

order theory. The following definition males these ideas precise.

Definition 5.2: Let M be a model of a fragment of PA and let IC, M. The second
order model <I,RyI> is called a clone. If <IRpI> is isomorphic to a model T,
we say <LRyI> is a T-clone. If <L, RyI> models a theory T, we say <L Ryl>

is a T-clone.

The definition of clone is so general that their existence is obvious. It is less
obvious that interesting clones exist. The next two theorems show how to grow

WEKLy-clones and ACAg-clones from initial segments described by Kirby and Paxis.

Theorem 5.3: Let M be a countable model of P™ and IE;. Let IC, M be a semi-
regular initial segment of M. Then <ILRyI> is a WKL -clone.
Proof: Let I and M be as in the statement of the theorem. Let I'=<ITRyI> be
the resulting clone. Since I is semi-regular in M, I' models the basic axioms and
induction for £ formulas. It remains only to show that I' satisfies the desired
comprehension axioms.

Firss, we show that if “k ¢k ,n) is a B0 formula with set parameters in Ry,

then Rypd contains the code of a function f such that

Pk= (Sk ¢k ,n)) = (Tt (J (t)=n))
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Since I models IX, it is easy to show that for each m €1, there is a finite function
f, coded by ¢ €L such that
I=n <m (Sk<m ¢lk,n )Tt <n (f.(¢)=n))):

Pick »,6M such that b;>1 Then (for an appropriate first order translation of the

formula}

mel M e <by o <m (Tk<m ¢(k,n)) o (Ft <n (fo(t)=n))

By %, induction in M, there is & bp>>T and a ¢ ;<Cby such that
M b=m <by\Yn <m (Fk<m ¢(k,n))= (Ht <m (f,(t)=n))
Thus ¢4 codes a function f in RyJ mapping I to I'so that

T = n (Fk gk ,n))= (Tt (f (t)=n)).
I T k= b =t (¢>b /\ =k ¢{k,t)} then the above construction can be modified
to insure that f is injective.

We now show that given two injections in Ryl with disjoint ranges, there is a
coded set X which separates the ranges of the functions. Applying this to functions
constructed as above shows that I' models AL-comprehension. Applying it to arbi-
trary injections yields that ME=WKL, Let f ,g €Rpl be injections with disjoint
ranges. Let ¢ and d be the codes of / and g in M. By IX; in M, we can find
some b>>T such that ¢ and d code disjoint injections on {z:z <<by}. For every

m €I, I models the existence of a set Xy coded by k€1, such that

[ ynem (St <m [ (E)=n)on€X,) A (Dt <m g(t)=n)—ngX;)

By I, in M, there are elements & ,b 5>I such that (for an appropriate translation of
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the formula),

M = n <by (Ft <bs f (t)=n)n X)) A (Ft <bz g (¢)=n)—ngX,)).
Since X NIER)I, T models that there is a set separating the ranges of [ and g. B

Theorem 5.4: Let M be a countable model of P~ and IZ,. Let IC, M be a strong

initial segment. Then <L RyJI> is an ACAg-clone.

Proof: Let M and I be as stated. Let I'==<IRyI>. By Theorem 5.3,
I' b= WKL, By the definition of strong initial segment, I' models Ramsey’s theorem

for triples and two colors. By Theorem 1.5, this suffices to prove that I' = ACA,.

Theorems 5.3 and 5.4 do not actually prove the existence of WKl g-clones and
‘ACAochones. However, existence of these plones follows immediately from the
existence of semi-regular and strong initial segments. Using the results of Kirby and
Paris {26] we can prove more than simple existence. The following corollary indicates

that ACA -clones not only exist, but are rather profuse.

Corollary 5.5: Let M be a countable model of PA and let  €M. Then there is an
initial segment IC, M such that j€Il and <LRpI> is an ACAg-clone. Thus M
generates countably many ACAclones. The same statements hold for WKL

clones.

Proof: Let M and j be as in the corollary. Kirby and Paris [26] showed that there
is a strong initial segment I of M such that j€I . By Theorem 5.4, <IRpI> is an
ACAg-clone. Given any finite collection of such segments, it is possible to pick an
element of M greater than any of them. In this way, countably many ACA-clones

can be generated. Since an ACAgy-clone is automatically a WHKLg-clone, the same

statements hold for WKLg-clones.
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We now have an abundance of clones. To gain more control over the nature of

the clones, it is necessary to devise methods of building models of first order arith-

metic with specific initial segments.

5.2. I~ultrapowers

In this section, we reverse the process of cloning. The method described here,
using I-ultrapowers, builds first order models from second order models. Through
this technique, great control can be gained over the structure of the first order
models, resulting in the ability to grow specific ¢lones. The details of the method
parallel those of ultrapowers of models of PA. Indeed, many of the results in this
section are best viewed as independent confirmation of theorems of Kirby {25]. This
is particularly true of the analogs of Loé’s Theorem. The first step toward these

results is to find the appropriate ultrafilter analog.

Definition 5.5: Let " be a model of RCAy A collection of sets UCSy is a

restricted ultrafilter (on Ny relative to I') if for some ultrafiller V on Np, U==VNSp.

There is a similar notion of ultrafilter on initial segments of models of frag-
ments of PA, replacing Ny by I and Sp by Ryl Although this construction is gen-
erally called a definable ultrafilter, we will call it a restricted ultrafilter on I relative
to M. The justification for abandoning the usual terminology is simple. A definable
ultrafilter is generally not definable (as a sequence of sets) in Ryl Similarly, a
restricted ultrafilter on Np is generally not definable in I'. Regardless of definability,
o vestricted ultrafilter does retain many of an ultrafilter’s properties, as- shown by the

following lemma.
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Lemma 5.7: Let I'E=RCA, and let U be a restricted ultrafilter on Ny relative to I'.

Then U acts like an ultrafilter. That is:
i) U has the finite intersection property.
i) If XU and YESr such that XCY, then YEU.
iii) If XeSr then XeU or X° €U.

Proof: Let T and U be as in the lemma. Let 'V be the ultrafilter on Ny such that

U=VNS;. To show i}, suppose X, ..., X, €U Then MNX; €V and, since
i<n

I'E=RCA;, M X;€8r. Thus N X;€U. To show it), suppose X€U, Y&Sy, and
i <n i<n

XCY. Then XeV, so YEV, and since YE8r, YeU. To show iii}, let XESp. Since
PE=RCA,, X° €Sp. Since V is an ultrafilter, either XEV, or X €V. Thus either
XeUor X eU. ¥

We now use & restricted ultrafilter on Ny to define equivalence classes of func-

tions on Np and a reduced product.

Definition 5.8; Let I'E=RCA, and let U be a restricted ultrafilter on INp relative to
. Let F denote the collection of functions from Ny into Np which are {coded) in Sp.
For f ,g€F, we say f and g are U-equivalent, written f =y g, if and only if
{ieNpT b= f (i )=¢(i)}€U. The class of functions which are U-equivalent to f
is denoted [f ], Le. [J |={g€F:f =y g}

Lemma 5.9: Let T', U, and F be as in Definition 5.8. Then U-equivalence is an

equivalence relation.

Proof: Reflexivity and symmetry are immediate. Transitivity follows from the fact

that U has the finite intersection property, Lemma 5.71}.
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Definition 5.10: Let I, U, and F be as in Definition 5.8. The restricted reduced
product of Ny denoted by JTJyNr is defined by TTuNp={[/ }:J €F}.
Definition 5.11 Let Tl=RCA, and let U be a restricted ultrafilser on Ny relative to
I'. The I-ultrapower (of Np modulo U) is the model M of L defined by:
i) The universe of M is TJuNp.
i) M k= {f J=Ig]if and only if {7 eNpI'Ff (1)=g (i )}eU.
i) MBS |<g]if and only if {ieENpTES (1)<g(i)}€U.
iv) The interpretation of [f [+g]in Mis {f +g]
v) The interpretation of [f }-{g]in M is [f gl
vi) The interpretation of 0 in M is [f %] where f 0 is the function (coded} in 8p
such that TR (f °( )==0).
vii) The interpretation of 1 in M is [/} where f ! is the function (coded) in Sp
such that D=V (f 12 )=1).
As per usual, we will use JyNr to denote both M and the domain of M.
The nexb step is to prove an analog of Lo&’s theorem. Due to the use of the
restricted reduced product, the result is not as strong as Foé’s theorem. However,

as the following theorem and its corollary show, the I-ultrapower has reasonably nice
properties.
Theorem 5.12: Let I'=RCA, and let U be a restricted ultrafiiter on Np. Let

TTuNr be the I-ultrapower of Np modulo U. Then:

i) For any term ¢(2y, .. -, z,) of Ly and elements {J 4], - - -, o €T ToNy,

we have
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e D=l (), e T ) EN ]

ii) Given any o formula #(zy, ..., 2,) of Ly and [/ 4], .. ., [/ 2 €T TNy,

we have
HUNY‘E"—;‘IJ)([JC 1]7 R [fn]) il {i GNY‘Plutﬁb(f 1(2 ), sty fn (3))}6-0

i) Given any T, formula ¢(zy, . .., 2, ) of Ly and [f4], .- -, [f . e TuNp,

we have
TLoNcE=6(lf 1), - [Fa DB {§ ENpTE=g(f 5(4), - . -, [ (1))} 2X€EU.
iv} Given any IT, sentence ¢ of L, we have

Ti=¢ it [TuNrF=¢-

Proof: To prove part i), we proceed by induction on the complexity of the term.
The cases for variables and constant symbols are trivial. The cases for the produc-
tion clauges with 4 and - follow immediately from parts iv) and v) of Definition 5.11

and AL comprehension in T

Part ii) is also proved by induction on formula complexity. To simplify the
notation, we will consider formulas involving only one free variable. The proof for

formulas with several free variables is essentially identical

For atomic formulas, apply Theorem 5.12i) and Definition 5.11, part iii) or iv).

For example, given terms ¢ (2 ) and f5(z ) in L; and f &Sy,

TToNek=¢ 29 ((F D=t (11 )
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iff (Theorem 5.12))
TTuNrE=[<t(F (1)) ENp> =<t f (¢)):8 €Np>]
iff (Definition 5.11ii))
{1 eNpIf=t(f (¢))=ta(f (£))}€V.

The case for < is similar.

There is a little twist in the proof of the clause for negation. Suppose that part

ii) holds for ¢{{f 1) where ¢ is a X, formula of L;. Then:

[ToNpk=g((f )
iff (definition of =)
TTuNr does not F=¢((f ])
iff (induction hypothesis)

X={i eNp:TF=¢( [ (¢ )}}¢U.

Since ¢ is Bg, by A comprehension in I', X€Sp. Since U is a restricted ultrafilter

on Np, we have:

Xe¢U and X€&Sp
iff (Lemma 5.7iii))

X° ={i eNp:TF=¢(f (i)} €U
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iff (definition of =)

{1 eNpI=-¢(f (§))}€U.

The clauses for conjunction and disjunction follow immediately from the induc-

tion hypothesis and Lemma 5.7. The clauses for implication and biconditional are
also straightforward.
To prove the clauses for bounded quantifiers, assume that ¢ is a Ty formula of

L;, ¢ is a term of Ly, and f €Sr. Then:

[ToNp==le <t (7 1) é(=,[/ 1
iff (definition of Ta <t)
[TuNpl=Te (@ <t (If DA, D)
iff (interpretation of —jz )
for some g €Sy, TToNel=lg <t (f DASg LIF D)
iff (induction hypothesis)
for some g €Sy, {i ENpTEg (1)<t (F ()9 (4).F ()IEV
iff (interpretasion of —jz or, conversely, A comprehension in T')
(i eNpTETr (o <t(f (DA, S ())eU

iff (definition of Ha <t)
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{i eNpT= Hz <t (f (4)) 8=, f (1))}€U.

The proof for bounded universal quantifiers follows immediately by rewriting
Yz <t ¢ as ~Tx <t —¢. This concludes the proof of part i) for Xy formulas of

Ly
To prove part iii), suppose that ¢ is a ¥, formula of Ly, and f €Sp. Then:

HUNI‘ISE]Q' ¢z S D

iff (definition of =)

for some g €8p, [TuNr=¢(lg LIS 1)
iff (Theorem 5.12ii))
for some ¢ €Sp, {4 EN?T}:‘?(Q (4).f (1))}eU
iff (interpretation of e or, conversely, Ay comprehension in T')

{ieNpTHFSe ¢z ,f (1))} 2XeU.

The absence of parameters makes the proof of part iv) easy. Let ¢(z,y) be a
Ty formula of L. Suppose that TToNrE= Ve y é(z,y) and Tz Yy ~¢(z,y).
Then for some ¢ ENp, MEYy —é(c ,y). Let [ © &Sy be the constant function for ¢ .
Then J[uNpE==y ¢(f ° |y ), so for some g eSp, [ToNrE=¢([f ¢ 1lg]). By Theorem
5.12i1), {1 eENpTE@(S (1),9 (1 ))}€U. Since f(i)=c, {ieNpTEd(c,g(1))}€U, so

M=~y ¢{c ,y ), contradicting the choice of ¢ .
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Conversely, suppose shat I'EVa =y ¢(z,y). Fix [ €Sp. Then by AL
comprehension in I, there is a ¢ €Sp such that I'=V/i ¢(f (i),9(¢)). Hence,
[ ENRTE(/ ()0 (i)}= Np€U. By Theorem 5.12ii), [ToNe=g(lf blg ), so
HUNF}———ay #([f },y ). Since the choice of f was arbitrary, we have
IToNr=Y2 =y é(z,y) W
Corollary 5.13: Let I=RCA, and let U be a restricted ultrafilter on Np. Let
TTuNp be the I-ultrapower of Ny moduio U. Then TTulNr is a model of P plus
IZ,.

Proof: Let I', U, and []yNr be as stated. Applications of Theorem 5.12iv) show
that [JuNr models P™. Let & be a Ty formula of L;. To simplify notation, we will
consider the case where @ has one parameter, [f JE[JuNp. Suppose, by way of con-

tradiction, that

[ToNr = 6/ 10) AWy (0 Ly )=0ls Ly +0) A -y (017 Ly )

Since TTuNpE= Sy (—6([f 1y )), for some g €Sy, TToNF= -0/ 1,l¢]). By Theorem
5.12i1), X= {i ENpTF=—0(f (i ),g (1 )}€U. Since f, g, and X are in Sp, by A
comprehension in I', for some h €Sy,

{ieNp T b= 0(f (4 ),h (E DA ()5 (1)+1)}E0.
By Thecrem 5.12i1), T[uNpE= 8((f LIk DA-K[S 1,[h1+1), contradicting the assump-

sion that TTuNrE= ¥y (([f 1y)—0(/ Ly +1). W

In the proof of Theorem 5.12, we were severely hindered by the lack of set
comprehension in I'. Increasing the available comprehension to WKL, does not

improve the situation.
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Theorem 5.14: There is an w-model T' of WKLy, and restricted ultrafilters U and
V on w==Np relative to I' such that:

i) There is a IT; sentence ¢ of Ly such that DF=¢ and J[yNpF=—¢.

ii) There is a L formula @ of L and an f ESp such that

TIvNpE=YE —0(f ],¢) but for any Z€V, there is an i €Z such that

Pe=to(f (i).1)-
Proof- Let T be a countable w model of WKLy such that Sp consists entirely of
sets of low degree. Such a model exists by Theorem 1.6. Let <{g; >>;z, be an
enumeration of the totzl functions in Sp. We specify that go is the function which is
constantly 0. Let X be a set not in Sp such that for some Lo formuls @ of Ly, we

have X=={2 eNpT'F==t 0z £ )}, and Te=\t o Yy (82 £ )Ny .t ) =y ). Note

that X is essentially the range of a recursive injection. We will now construct U.

We will define a filter base <F, >, ¢, such that for each n the following five

properties hold.
1} min (F,)>n
2) F, is infinite.
8) Frop1&Fn.
4} F, €Sr.

5) There is an f E€Sr, such that for every keF,,

I Do <k (Fy <f (8= 9 DNz <2 (F)0(z,2)))-
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Let to=pn(—z <n6(z,n)). Such a t, exists, since otherwise, we would have
X={a:=n <z 0(x,n)}, contradicting X¢Sr. Set Fo={kENp:k >¢t;}. Then
min (Fy)>>0, Fy is infinite, and Fo€Sr. Let f * be the identity function on w. For

any k >tg, we have IME=THa <k(Hy <k6(z,y)\Vz <0-8(z,z)), so property 5)

holds for Fy.

Suppose that for all 7 <n, we have defined F'; satis{ying properties 1) through

5). We will now define F,,. To do this, we first define the auxiliary function f, by:

[ n (O)=pt €F, (He <t (Hy <t6(z ,y)\Ve <gy (2 )-8z ,2))) and
Fo(GA0=pt €F 4{t > [ (1IN <t (Hy <t 0(z ,y )AVz <g, (2)8(z ,2))).

Since f, is AL definable in g, and ¥,_;, f,ESp. Also, f, is strictly increasing.
Furthermore, f, is total. To see this, suppose that j is the least integer for which

f,(7) is undefined. Let {,= min (F,_;}if j=0and ¢;==F, (j-1) otherwise. Then
I b= Wt EF, ot >t =Yz <t (Sy <t 8(z ¢ )=z <g, (z)0(z,2))).
Since ¥, _; is infinite,
T = e (Sy oz )Tz <gy (2 )8z ,2)).

Thus, X={z €w: Tz <g, (2 )8(z ,2)} €Sy, contradicting the choice of X.

We now define F,, in termsof f, and F,_; by
F,={k€F, .1k >n \de <k (Hy <[, (k)(z,9)\Vz <g, (= )-02 ,2))}.

Since F, is A definable in F,_; and f,, F,€Sr. Clearly, min (F,)>n and

F, CF,_;. Tosee that F, is infinite, fix m €w and choose k €F,,_; such that
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k> max ({m,n}). Then [, (k)eF, 1, f,(k)>n, and
T = e <F (R )y <F o (k)05 )Yz <ga (2 )0(z,2)).
Since f, (k)<<f ([ (k)
L F fo(k)>n Ade <5 )y <fa (5 (B0 ,5)AV2Z <gy (2)70(z ,2)),

so f,(k)EF, . Since the choice of m was arbitrary, and f,(k)>m, F, is infinite.

Finally, for any k €F,,,
D= Jo <k Gy < f o ()0 5 )Nz <90 (2)-0(z 2 ).
Since f, €8S, F, satisfies property 5).

Let U be a restricted ultrafilter on w containing F, for all new. Since
<F, >,c, 18 a nested sequence of sets, it has the finite intersection property, so
such a U exists. Furthermore U contains all final segments of w, since for every &,

{n€wn <k }INF;="0. Let T[N denote the Iultrapower of Np=w modulo U,

To prove part i) of the theorem, let ¢ be the sentence
Vk Sm i <k (Hy <5 0(z ,y J=z <m0z ,z)).
For any k €w, an appropriate m is given by the formula
m == max {{n €w: Tz €XNk +1(n =put 8(z ,t ))})-+1.

Since finite initial segments of X are in Sp, IF=¢. On the other hand, suppose that

[{uNrE¢. Then for some g €S,

TToNr b= Wi Ve <[/ ) y <j o v )~z <lg (e ,2)).
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Now g is g, for some n, so, plugging in f,, for J vields
TIoNr b= Ve <177y <2100 9 )~z <[ga 16z ,2))-
By Theorem 5.121i), we have that
Y=—{i cwTk=Yz <i(Jy < £, ()8(z,y )=z <g, ()0 2 ))}EV.
But for all 1 €F, ,
T b= e <i(Hy <70 ()0 ,y)N\Vz <ga (i )6z 7)),
so YNF, =0 and Y&U, contradicting the preceding statement. Since ¢ iIs a sentence

and [JyNp does not model ¢, we have HUNI«%-"‘QS ag desired.

We now turn to the construction of the second restricted ultrafilter, V. Let 0,
X and < g; > ;e be as before. Let <H, >, ¢y be an enumerasion of all elements of
Sp which are disjoint from X. We will define a filter base <G, >, ¢, such that for

each n the following fve properties hold.

1} min (G, }>n

2) G, is infinite.

3) Gy &G

4) G,NH, =4

5) G,N{ieNpT = Tt <g, (6)0(¢,¢)}=0.
Let Go= {k ENpk £0/\k ¢Hy}. Clearly, properties 1) and 4) are satisfied. Since
XC G, and X is infinite, so is Gy, so property 2) holds. Since g is constantly O,

property 5} is satisfied. Given <G> oy, sabislying properties 1) through 5), G,
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is defined by

G, ={k €G, 1k >n Nk EH, AV <g, (k)-0(k 1)}
Clearly, G, satisfies properties 1), 3), 4) and 5). Let g= max ﬁn(gi ). If G, is
finite, then X differs from {1 eNpTE=—t <g(i)6(z,¢}} by a finite set, contradicting
the fact that X¢Sr.

Let V be a restricted ultrafilter on w containing G, for all » €w. Property 1)
insures that V contains all final segments of w. Let TTvNr denote the I'-uitrapower

of N modulo V.

To prove part ii) of the theorem, let 8 and [ ¥ be as above. Suppose that

[TyNr=TJt 617 ),t). Then for some g €S, TIvNet=0((f “Llg ). By Theorem

5.12i1), there is a set 'Yy such that
Yy={i eNpI =03 g (£))y€V
Pick n such that g, (7 )==g (¢ )+1 for all ¢ ENp. Let Y, be defined by
Y,=={i ENpI'F=t < g, (1)6(7 1 }}-
Then Y, CY,ESy, so by Lemma 5.7i1), Y,€V. But this is absurd, since Y NG, =0,
Thus TTyNck=Ye—0(1f #16)
Let Z be any set in V. If for every i €7, T/t 62,1 ), then Z 1s H, for some

n. This is impossible since G, NH, =@, Thus, for some ¢ €Z, Tt o(f W),

as desired. JH

In spite of the indications from Theorem 5.14, there is hope for a stronger ana-

log of Loé’s theorem. Clearly, more set comprehension than that provided by
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WKL, is necessary. The following theorem shows that if I'F=ACA, then we get the

usual version of f.0§’s theorem.

Theorem 5.15: Let I'=ACA, and let U be a restricted ultrafilier on Np. Let

TTuNp be the D-ultrapower of Ny modulo U. Then:

i) Given any formula ¢(zy, ..., 2,) of Ly and [f 4}, ..., [ €] TcDNr we

have
[ToNeE=o([f ), -+, [Fa)) i {0 €NRTE=G(f 1(i), ..., £, (E))}EU.
ii) Given any sentence ¢ of L, we have
P4 it TTgNrk=¢.

Proof: Part i) follows immediately from part i). The proof of part i) is similar to
that of Theorem 5.12ii). The first change necessary is to generalize the proof of the
induction clause for negation to all formulas. Suppose ¢([f ]) is a formula of L, wish

a parameter from [TyNp. Then
TTuNeb==4((/ 1)
iff (definition of =)
TTuNr does not =¢([f ])

iff (induction hypothesis)

X={i ENp:T{=¢(f (¢))}¢U
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Since I'=ACA,, X&8p. Since U is a restricted ultrafilter on Ny,

X¢U and X€8p
iff {Lemmab.7iii))
X? =i ENpTH—d(f (i )}EU.

The only other modification of the proof is in the clause for existential quantification.
Here, ACA, is used to show that for any formula ¢(z,y ) of L; and any parameter
[f 1€l TuNE, if {i eENpTE2 ¢(x , f (1))}€U, then there is a g&Sp such that
{i eNpTE¢(g (i),f (:))}€U. Universal quantification can be eliminated by rewrit-
ing e ¢ as ~Jz—¢.

Corresponding to the stronger version of Theorem 5.12, we have the following

stronger version of Corollary 5.13.

Corollary 5.16: Let 'FACA, and let U be a restricted ultrafilter on U. Let
[TuNp be the M-ultrapower of Np modulo U. The T TuNy is elementarily equivalent

to the first order part of . In particular, [[yIN[=PA.

Proof: Elementary equivalence follows immediately from Theorem 5.15i1). Since
the first order part of any model of ACAy is 2 model of PA, the first order part of I’

models PA. By elementary equivalence, [ [y(Nr=PA. W

It is somebimes useful to consider expansions of T-ultrapowers to models of
supersets of Li;. The most natural such expansion is to include constant symbols for
elements of Np and function symbols for functions (coded) in Sp. If £ is a function

symbol representing f €Sr, the natural interpretation of f([g 1) in [ToNr is {f (g )]-
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Set, notation can be introduced into the language by treating n €X as an abbrevia-
tion for xx{n)="1, where xx Is a function symbol representing the characteristic
function of X in Sp. Note that we are introducing set constants, not set variables.
If L;" is such an expansion of Ly, we define the complexity of a formula ¢ of L;
exactly as before. That is, new constant symbols and function symbols are treated
just like 0 or 4, not as some new sort of parameter. The expansion of the language
in no way changes the structure of the resulting ultrapower. We summarize this in
the following porism.

Porism 5.17: Let T’ be a model of RCA,. Let L; be an expansion of L to include
new consbant symbols for elements for Ny and new function symbols for functions
{coded) in Sp. Then Theorem 5.12, Corollary 5.13, Theorem 5.15, and Corollary 5.16

hold with L, replaced by Ly

5.3. Canonical Clones

In this section, we return to the construction of clones. Using I'-ultrapowers,
many interesting models of Ly can be obtained. To grow clones from these models,
we need only distinguish appropriate initial segments, One excellent candidate is
defined below.

Definition 5.18: Let I'FERCA, and let [JyNp be the restricted ultrapower of Np
modulo a restricted ultrafilter U. The canonical initial segment of [JoINp is denoted

by Iry and defined by

Ir y=={lg 1€ TuNr—ic ENp TToNpE=[g </ “ 1},

where f ¢ is the function which is constantly ¢ .
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Intuitively, Iry is the downward closure in TTyINp of the set of constant func-
tions. Although Iry is clearly an initial segment, it is not necessarily a proper initial
segment. If U has the following property, then Ipy is proper. The terminology used

here is the same as that of Kirby {25].

Definition 5.19: A restricted ultrafilter U on Np is uniform if it contains all final

segments of INp, Le.
Wk ENpLj eNp'E=j >k JeU.

Lemma 5.20: Let I'FRCA, and let U be a restricted ultrafilter on Ny, Then U is

uniform if and only if ¥y is a proper initial segment of JJyNp.

Proof: Let I' and U be as stated. First suppose that U is uniform. For any j €N,
{keNpIFj </ “E)eU, so |f "¢y, and Iny is proper. On the other hand,
suppose that for some k&Np, {Jj ENpIEj >k 3¢U. By Lemma 5.7iii),
{jENr:T%—:j <k}eU. By In0 in T, for any total function f €Sy, there is a b €Ny

such that TE=\/y <k [ (7)<<b, so Iy y is not proper. -

Although Lemma 5.20 shows that uniformity is the desired property, it may
seem odd that we do not simply specify that U is nonprincipal. If T' is an w-model,
then U is uniform if and only if it is nonprincipal. However, if Ny is nonstandard,
then requiring U to be nonprincipal does not guarantee that Iry is proper. This fact

follows immediately from Lemma 5.20 and the following lemma.

Lemma 521: Let ME=RCA, with Np nonstandard. Then there is a restricted

ultrafilter U on Np such that U is nonprincipal but not uniform.
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Proof: Let I' be as stated. Let V be and nonprincipal ultrafilter on w . Define U

by
U={XeSrTYeV YCX}.

It is easy to verify that U is an ultrafilter. Since V is nonprincipal and for any
XeU, Xnws48, U is also nonprincipal. For any b €N such that b is nonstandard,

{j ENp:j <b }EU, s0 U is not uniform. [

The fact that Ipy; is proper does little to determine its structure. The following
property on U yields a natural bijection between Ny and Iy, Such ultrafilters are
commonly used in the literature on models of arithmetic.

Definition 5.22: A restricted ultrafilter U on Np is additive if U is uniform and for
any bENp and f €Sp such that f :Np—b, there is an a&Np such that
{j ENp:J (4 )==a }€U.

Lemma 5.23: Let U be a restricted uitrafilter on Np. The following are equivalent:

i) U is addisive,

i) [f J€lpy implies Tk €Np[f =y [/ *]

Proof: Let U be a restricted ultrafilter. First we suppose that U is additive and
[/ J€lry. By the definition of Ipy, there is some b such that
{jENpTES (i)<b }=X€EU. Let J €8r be the function defined by J (¢ )=/ (i)
for 1 X and [ (i }==0 otherwise. Since f :Np—b , by the additivity of U, for some

YeU,

e eNp VieY TET (4 )=

Thus Vi €YNX TES (1 )=a, and since YMXEU, [f j=ylf *]
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To prove the converse, suppose that U is not additive. Pick f €Sp and b &€Np

such that f :Np—b and
Ve <b {{ ENpf {1 )=0a }¢U.

Then Np=={i eNp:TF=f (i )<b } €U so [f J€lry, but Ve eNg(f ol B

The following lemma gives a well known necessary and sufficient condition on I

for the existence of an additive ultrafilter on Np.

Lemma 524 Let PE=RCA, be a countable model. The following are equivalent.
i) TE=BII>
i) There is an additive ultrafilter on Np.

Proof: Let FFRCAO—FBH? be a countable model. Let < f; >;, be an enumera-
tion of all f €Sp such that b eNp f :Np+b. We will define a filter base for U.
Let Xg==Nr and suppose that X; has been constructed and is unbounded in Np.
By BIIY, there is an element a €Np such that (i eX;Thf;{i)=a}is unbounded
in X;. Let Xjp={i€X;:/; (i }=a}. Let U be any restricted ultrafilter on Np
containing X; for every j&w. Uls clearly additive.

To prove the converse, suppose that U is an additive restricted ultrafilter on
Np. Fix gen g (with possible set parameters from Sr) and b €Np such that

Tz <b =t Vi 0(z,t,0). We will assume that
Tk=Y/2 Hz <b Vit <z =i -8zt ,5),

and derive a contradiction. By AL comprehension in T, define functions g and f in

Sp such that
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I (2)=pk <b (Yt <z Ti <g(z)~0(k,t,i))
Since f :Np—b, for some XeSp and a€Np, VieX IE=f {{)=a. By the
hypothesis, for some fixed t €Ny, TF=Y/7 6(a,t,7). Since U is uniform, there is an
s €X such that Tk=s >f. By the definition of f , If==i < g (s )=f(a ,¢,i), yielding

the contradiction. Note that this portion of the proof does not use the assumption

that " is countable. [l

The next definition formalizes the construction of clones from canonical initial

segments.
Definition 5.25: Let 'E=RCA, and let U be a uniform restricted ultrafilter on Np.
The canonical clone of I' modulo U, denoted by Wpy, is defined by
Y u=<Iru, Rypndou™>-
The most interesting canonical clones are those in which \IIF’U|=I§310. The fol-

lowing two definitions are used in a lemima giving a necessary and sufficient condition

on U insuring this much induction in Wry.
Definition 5.26: Let « ENp. A binary function f €Sy such that [ @ X Np—Nyp is
called locally increasing if

TRV Yy Vil <y <ae—f (z,0)<f (y,4))

Definition 5.27: A restricted ultrafilber U on Ny is called separating if U is uniform
and for every ¢ €Np and every locally increasing total binary function f €Sp such

that f :a X Np—+Np, there is a t ENp such that for all Jj €N,

{1 eNpTEYr <o (f (2z,4)St\V/ S (2,i)>7 }€U.
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Lemma 5.28: Suppose that NE=RCA, and U is a restricted ultrafilter on Nyp. The
following are equivalent:

i) U is separating.

i) Wpob=Is)
Proof: To prove i) implies ii}, suppose that U is separating. Let pexy, aEN‘;,P'U,
and X€8y_ such that

1) \I!;,Uiz_:‘lt@((),t X} and

2) \pr,U|== o <a{—t 6zt X)—t 0z +1,¢ X))
Let g €Sp be such that [g] codes X in [JyNp. Let #,€L, be the formula which

replaces the use of € and X in @ by the equivalent Ly formulas using [¢g]. Let €Sy

code the greatest element [k |E€] [¢Nr such that

[ToNrk=(h | <a Ao <[h ]t <If #) 6ot g .

Without loss of generality we may assume that T=Y/1 Yz <h (Yt <iby(z,t,9 ().
Let b €Np be some element such that W yi=[h <[/ b1 Define f :b +1 X Np-+Np in
Sp by
ph <n (Vi <zt <k 0,(i,t,9(n))
flz,n)= if 2 <h{n)and such a k exists.
n if b >2 >h(n).
By definition, f is total and locally increasing. Since U is separating, we can find

m €Ny such that

\—/j ENF{@. GNI":FEZV:B <bf (1' R )ﬁm \/f (1’ % )>.7 )}GU
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Using m , we can define w €8y such that w INp—Np by
w (i )=pz <b(f (z,i)>m}

If WpyF=0={w], then ¥r ub=Ve 80,8 X), contradicting 1). If VryE=0<|wi<ea,
then \XIP’U{::E]t 6([w }-1,8 XIAYE 8w ],t X, contradicting 2). Thus
\P;«,Ufz[w]aa, so YpyFe <a —Jt <[f ™)8(z,t X). Since the choice of a was

arbitrary, ¥p yF=IS/.

To prove that ii) implies i), suppose that U is not separating. Choose [ €Sp
and ¢ €Np such that f :a X Np—Nr is total and locally increasing and
vt eNp=lj €Np{d eENpTEe <o (f (2,i)>¢ AS (2,1)<7)}€U.
Without loss of generality we may assume that DF/if (0,7 )==0. Let g €8p be given.
by g(¢)==11 pz(m’f @ e and tet X€Syy, be the set coded by [g] in [TuNr. Then

z <a

for all b,c €Ny,

Urol=(b e ), EXff {i ENpTE=b (1) <<a A\ S (b(¢),i)=c (i )}€U.

Since TE=V/if (0,4 )=0, Yrof=([f %[f *1), €X. Suppose that Y=k l<[f *-IA=

Tle([h]), €X Then
i eNp{i eNplETe <a(f (z,1)>t AJ (v,0)< 7)€V
Since f is locally increasing,
=7 eNp{i eENpTE(S (A (¢)+1,4)<7)}€U.
By Theorem 5.12ii) and the definition of Ny, Up o=t ([k]+1,t), €X. Thus,

Y oD <[ F1(HE (2 ,8), Xt (2411 ), €X).
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However, if [h |€Ny, , then =7 €Np ¥ uf=[h ]<[f 7]. Since f is locally increasing,

{i eNpTFf (a-1,i)> 7 }eU,

so Wp gkt <[k [([f 7Yt ), ¢X. Since A was chosen arbitrarily,
Vo=V (1f “ 7t ), €X. Thus, ¥y y does not model 12, [l
Corollary 5.29: Suppose TE=RCA, and U is a uniform restricted ultrafilter on Np.
The following are equivalent:

i) U is separating.

i) ¥p WKLy,
Proof: If U ig separating then by Lemma 5.29, \IIF,U§=121°. By Corollary 5.13,

TTuNp models P~ plus I¥,. By Theorem 5.3, \I’F,U}*—‘WKLO. Since WKL includes

I, i) implies i) is immediate from Lemma 5.29. ||

The following lemma gives a necessary and sufficient condition for the existence
of separating ultrafilters. It is noteworthy that this condition is strictly stronger
than the condition shown to be equivalent to the existence of additive ultrafilters in

Lemma 5.24.

Lemma 5.30: Let I be a countable model. The following are equivalent:
i) TEIZS.
ii) There is a separating restricted ultrafilter on Np.

Proof: First, we will assume that TE=134 and construct a separating ultrafilter on
Np. Let <[ >;e, be an enumeration of all the total locally increasing binary func-

tions f €Sp mapping ¢ X Ny into N for some ¢ €Np. We will inductively define a
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nested filter base for a separating restricted ultrafilter on INp. Let Xy=Np. Suppose
that for jEw, X;€Sp has been defined and is unbounded in Np. X;, is con-

structed by one of the following three cases.

Case 1: Suppose that TFY/t =i €X,; Ve <a(f;(0,0)>¢), where a XNy is the

domain of f;. Define X; g by X, ;y=/{2;:¢ ENp} where

zo==pt €X;(f;(0,t)>0), and

g 1=t €X; (Vi <k (f;(0,6)>f ;(0,2;))).

Case 2: Suppose that M=t VieX; Vo <a(f;{z,i)<t), where ¢ XNp is
the domain of f;. Set X, ;=X;.

Case 3: Suppose that neither Case 1 nor Case 2 holds. That is,
TE=Te i eX, (f;(0,4)<t), and TEY:iHieX;s <a(f;(z,i)>1t), where
a X Nr is the domain of [ ;. Clearly ¢ >1. Suppose for a moment that

Il 30 Vi €X; Vo <a-1(f;(z,0)>t\/f; (2 +1,)<b ).

We will now derive a contradiction via an application of IX.

Fix y < a~1. Suppose that for some t ENp, IV €X; (f;(y,4)<<t). Then

Pl i €X, Yo <a-L(f (2 ,4) 20 \/ 75 (5 +1,)<b).
Thus, e==b i €X; (f; (y +1,£)<<b). Since the choice of y <a-1 was arbitrary,
we have
Py <a-1(Tb Vi €X; (f ;{y ,i)<b )b Vi €X; (f ; {y +1,8)<<b)).

Since Tk=2 <a-1796 i €X;(f;(0,)<b), by IB in T,
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Th=tr <a-179b Vi €X; (f;(z,0)<b).
Since f is locally increasing, taking = ==a -1 yields
T==b i €X,; Ve <a(fj{z,i)<b),
contradicting the negation of the hypothesis for Case 2. Thus,
Tt T eX; Je <a-1(f; (@, )<t ASfj(z+12)2b).
We can now define X; y. Fix  €Np as given in the last equation. Define X;
by X; 4y=={2; 7 €Np} where

z g=pn €X; —a <a-1{f ;j{z ,n)>0) and

2y yr==pn €X; o <a-1(n > AS (2,0 )SENS (@ +1L0)>k).

Tt is clear from the construction that for each j€w, X;€8p, X; is unbounded
in Np, and X; DX ;. Let U be a uniform restricted ultrafilter containing X; for
all jew. It is straightforward to see that U is a separating ultrafilter. Pick any
locally increasing total binary function, f , mapping ¢ XNp into Np for some
@ €Ny, Then f is f; for some jé&w. If X ;41 was constructed according to Case 1,

then for every k €Np,
{i eNp:f (0,6)>k } 2K 4120 <k jeU.
Since f; is locally increasing, for any k €Ny,
(i ENpr <a(f (2,0)S0 ] (2,0)>k)}eU.

If X ;4 was constructed according to Case 2, then for the bound ¢ from that case,
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(i ENpYs <a(f (&,i)<1))2X; 1€V,
so for any k €Ny,
(i €ENpz <a(f (2,)<t\/ S (2,8)>k)}EV.

Finally, if X;,, was constructed according to Case 3, using the bound ¢ fixed in

that case, for any k €N, we have

ENpYs <a(f (2,8) <tV (@,0)>k)} DX a-fo o <EIEU.
This completes the proof that i) implies it).

We will now turn to the proof that ii) implies i). The hypothesis that I' is
countable is not used in this portion of the proof. Let U be a restricted separating
ultrafilter on Np. By definition, U is automatically uniform. Let gexy be a formula

with parameters in Sy such that

Pe k7 6z k7).
We will show that ' models the existence of a least such . This implies that
Fl:LIIQG, which, by the comment following Theorem 5.1, implies that I‘}ZIEQO. Fix
a €ENp such that Tk 256 k,j) For n<a and y €Ny, define the function
[ €8p by

ut <y (Yo <n Wi <y Tk <tV <i-0z.k,j))
fin,y)= if such a ¢ exists

{

y otherwise.

For a fixed y €Ny and any n <<, Tf (n,y)<f (n+ly),s0 [ is locally increas-

ing. For fixed y,z€Np and any » <a,
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Tz <n Vi <y +1Tk <sYj <i—8(z ki)=Y <n¥i<yJk <zVi<i-0(z,k,5),
so TE=f (n,y)<f (n,y+1). Since U is separating, we can fix a { ENp such that for
any j €N,
{i eNp Yz <a(f (2,0)<t\/ f (2,4)>7 }eU.
By BLlin T,
TE=Tn Yk <t =j <nbla,k,j)
Pick y €Ny such that y >n . Then
Me=e <a=n <y Wk <t j <nbla k.j),
soll=f (a,y)>t. By LE in T, there is an m €Np such that
==y (7 (m,y)>t)A\Vz <mVy (f (2,9)<¢).
The following four ¢laims complete the proof of the lemma.
Claim 1: TEYa <m —n <t Vi Tk <n Vi <i -0z ,k,5).
Proof: Fix z <m . Then TFEYyf (z,y)<t, so in particular, Ty f (z,y )55t +1.
By LIIC in I, there is a Jeast » €Np such that =Y/ (z,y)5%n 1. By the choice

of n, we may fix y €Np such that TE=/ (z,y )=n, and since [ Is increasing in the

second component, I'=Y/r (r >y —[ (2,7 J==n). By the definition of [,

PR >y Y <o Vi <r Tk <n Vi <i-8uk5),

so TE=Y/i —k <n Vi <i—f(x,k,j), as desired.

Claim 2 Tk <m ki 0z k,7).
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Proof: Fix 2 <m. Suppose that I'F=Yk <t=j6(z,7,k) Applying BEL in T,
yields I'=Ti Wk <t =j <i (2 ,k,5), contradicting Claim 1. Thus, we must have

D=k /5 —~6(z ,k 7 ), as desired.
Claim 3: DY Syf (m,y)>b.
Proof: Fix b. Choose n such that I'k=f (m ,n)>t. Define XeSr by
X={i eNpTE=Yz <a (f {2,0)<t\/f (z,1)>b)}.

By the choice of ¢, X&U, so by uniformity of U, we may choose 2 €X such that

z>n. ThenTk=f (m ,2)>f (m,n)>t,soTFf (m,z)>b.
Claim 4: Tkt Hj0(m k,j5).
Proof: By Claim 3, \/b —lyf (m ,y)>b, so by the definition of f
TS Ty Ve <b Jo <m =i <y Vb <o i <idfe k7).
Fix an arbitrary b >¢ +1. Then
Ty Ve <b +1de <m =i <y Wk <e =y <if(e k7).
Setting ¢ =b , the previous statement implies that
r=Te <mVk <b56(z k7).

Since b >f, the proof of Claim 2 shows that TF=Yk <b 5 8(m ,k,j). The choice

of b was arbitrary, so TE=\Yk =7 6(m ,k ,j ) as desired.

To complete the proof that ii) implies i}, we combine Claim 2 and Claim 4 to

obtain
D=k S 00m kA <m kY5 -6 k7).

Thus TELIY, completing the proof of the lemma. N
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Porism 5.31: If I is a countable model of RCA; and I8 then there is a restricted

ultrafilter on Ny which is both additive and separating.

Proof: The ultrafilter is constructed by carrying out the constructions of Lemma
5.30 and Lemma 5.24 on alternate steps. B
Corollary 5.32: There is a countable model WKLy, such that there is an addi-

tive restricted ultrafilter on Ny but no separating restricted ultrafilter on Np.

Proof: By Theorem 1 and Corollary 30 of Paris [36], there is an initial segment I of
s model M of PA such that <IRMI>EBIIEA ~I5y. By Theorem 3.3,
<IRyI>FWKL, By Lemma 524 and Lemma 5.30, there is an additive

restricted ultrafilber on <I,RyI>, but no separating restricted vltrafilter. i}

Corollary 5.33: There is a countable model T of WKL, such that for no restricted

ultrafilter U on Ny is Wpy a model of =

Proof: Let I' be the model of Corollary 5.32. No restricted ultrafilter on Np is

separating, so for any restricted ultrafilter U, Wpy does not model I B

The preceding corollary shows that for T, an arbitrary model of WKL, the
canonical clone of T' need not have a nice structure. The situation is much different
for countable models of ACAq. The following theorem shows that any countable
model of ACA, can grow a canonical clone which is a copy of itself. This result can
be viewed as a characterization theorem. In this sense, it states that every countable
model of ACA, can be embedded into a model of the L; theory of its first order

part.
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Theorem 5.34: Let 'k=ACA, be a countable model. Then there is an additive

restricted ultrafilter U on Np such that Wpy is a '-clone.

Proof: First we will construct ¥ry, and then we will construct the isomorphism

between T' and Wr g

The ultrafilter U is defined by constructing a countable filter base. Let
< f; >icw be an enumeration of the functions in Sy mapping [Np]3 inte 2. Let
X,=Np. Suppose that X; €Sy has been defined and is unbounded in Np. Let X; 14
be an unbounded subset of X; which is in Sy and is monochromatic for [ ;. Since
I=ACA,, such a set exists. Let U be an extension of <X >;¢, to 2 restricted
ultrafilter on Ny, and let Wry; be the canonical clone of I' modulo U as in Definition

5.25.

Let ¢ be a unary function of Sp with a bounded range. Consider the function
7 INpP—2 given by f (z,y,2)=1 if g(z)=g(y), and f (z,y,2)=0 otherwise.
The ultrafilter U contains a monochromatic set X for f . By a finite pigeon-hole
argument, f {[X]®)=1. Thus for some constant function [ ®€Sr, [g]=ulf ]

Since the choice of ¢ was arbitrary, by Lemma 5.23, U is additive. Let qS:N\I,m—»NF

be the natural bijection. To show that ¢ extends to an isomorphism between Yr oy

and T, it suffices to show that for all X€Sy

{i ENp Tz €X(¢(x )=1 ) }&Sp.

Intuitively, we know that I' and ¥py have the same integers. We now show that

they have the same sets.
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Let g €Sr be a function coding a set X€8y, . Define f NP2 in Sp by the

following rule. f (z,y,2)=11if g(y) and g (#) code the same subset of N below z,
otherwise f (z,y,z)==0. By a finite pigeonhole argument, there is a set HEU such

that f ([H)=1. Let <h; >>;en, be an enumeration of H and define Y by
Y={7 €Np:i is in the subset coded by h; }.

Since HESp, we have that YESr. Finally, it is easy to see that ¢ €Y if and only if
[/ ]€X, completing the proof. B

The following two results are easy consequences of Theorem 5.34. Porism 5.35
strengthens a theorem of MacDowell and Specker [28], stating that every model of
PA has an elementary end extension.
Porism 5.35: (Extended MacDowell Specker Theorem.) Let I'k=ACA, be countable.

Then there is an L, elementary end extension M of Ny such that RaNp=Sp.
Proof: Let U be the restricted ultrafilter on N constructed in Theorem 5.34. Let
M=][yNp. By Theorem 5.15, M is an L, elementary extension of Np. Since U is
uniform, M is an end extension. Finally, RyNp==Sg_, so since ¥y is a [-clone,
RyNr=Sr. Il

Corollary 5.36: Let I'FFACA,. Then there Is 2 Th(l)-clone.

Proof: By the Lowenheim-Skolem theorem, shere is a countable model T' such that

Th{T)=Th(T"). By Theorem 5.34, there is a T-clone. W

The next theorem is 2 converse to Theorem 5.34. It shows that the assumption
that T models ACA, is a necessary hypothesis in the preceding theorem. If is not

known if the statement is true when the requirement that U is additive is removed.
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Theorem 5.37: Let TFRCA, be a countable model. If there is an additive

restricted ultrafilter U on Np such that ¥r g is a -clone, then FE=ACA,.
Proof: Let T and U be as stated in the theorem. Let ¢I'—¥py be an isomor-
phism. Then ¢ is a Boolean algebra isomorphism between Sp and Sy . Thus, (U)

is a restricted ultrafilter on Ny . It is easy to see that #(U) is uniform.

We will now show that ¢(U) is additive. Let ¢(f )ESg,, be a function such
that for some ¢(a JENy, ., o(f ):N@?'U—ﬁqb(a). Ther T'=f :Np—a, so since U s
additive, for some Xe€U and j<a, TEVIEXS (i)=7. Thus ¥ Y
i €H(X)(S )i )=¢(7)-

Let M denote J[¢Np. To simplify notation, we will identify U with #(U) and
Np with Ny, Construct a new model K of L; by taking the ultrapower of M
modulo U, i.e. K=IIgM. Since U is additive, Nr is (isomorphic to) an initial seg-
ment of XK. Since U is uniform, the identity function in M defines an element k¥ €K
such that k €Ny and Kh=k <b for all b €M-1. Let XeRNp. Then an overspill
argument shows that X can be coded by some element [f €K such that
Kl=[f |<k. Thus f €RpmNp. Let KRy Ny such that X is coded by [f | in M.

Then for all § ENp,

Kk=jeX iff
JyeUyieY Kpp; | [ (7)) iff

IOYeUVYi€Y Mb=p; | f (1) iff
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ME=j eX.
Thus RyNr=RyNp. By Paris and Kirby’s Theorem 7 [26] this suffices to show

that Np is strong in M. By Theorem 5.4, <Np,RyNp>FE=ACA,.  Since

< NpRpNp> is ¥ and ¥y is a I-clone, TF=ACA,. W



CHAPTER 6

RAMSEY’S THEOREM

In this chapter, we examine the provability of certain restrictions of Ramsey’s
theorem in subsystems of Z,. The first two sections contain results on Ramsey’s
theorem for singletons and pairs. The third section contains a theorem on min-
homogeneous sets for regressive partitions which provides an interesting contrast to
the usual Ramsey’s theorem. The final section contains conjectures on the proof
| theore’sic.strength of Ramsey’s theorem for pairs. Since it has long been known that
Ramsey’s theorem for k-tuples (where k& >>3) is equivalent to ACAg over RCA,, the

situations for singletons and pairs are the only ones of interest.

We will make use of several standard notational conventions. For instance,
[N]* denotes the set of k element subsets of N. An element {zgzqy - .25 of
[N]’c is always treated as a sequence in increasing order. This convention allows us
to write partitions of [N]¥ as k-ary functions whenever convenient. The formula
f (X]f)=¢ means for every Ye[Xl*, f (Y)=c. Finally, we use the following
notation to avoid restating the entire Ramsey’s theorem simply to change the

exponent or the number of colors.

Notation 6.1: RT{(n,k) dnotes the formula of L, representing the statement: For

every f :[NJ"® —k there is an infinite set X and a ¢ <k such that f (X" J=c .

Notation 6.2: RT(n) denotes the formula Yk RT(n k).

103
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6.1. Singletons

If N is colored with a finite number of colors, it seems obvious that an infinite
monochromatic set must exist. Certainly, if the number of colors is an element of w,

this is the case.
Theorem 6.3: For all n €w, RCART(1,n).

Proof: Fix n €w. We will work in RCA,. Suppose f :N—n. If we have that
it <n =y e >y (f (¥)5%t), then /‘)(<\3y Nz >y (f (z )%t ), which implies that
y ¥t <n(f (y)s%t), a contradiction. Thus, ¢ <n ¥y o2 >y (f (z)=t). The

sets X, =={z €N:J (2 )=t } all exist by A comprehension, and one of these must be

the desired homogeneous set. i

In the proof of Theorem 6.3, we pass from a quantifier bounded by the number
of colors, n, to a finite conjunction with n conjuncts. If n is nonstandard, this
technique no longer works. The general form for such quantifier swapping amounts

to o bounding scheme. With this in mind, the following theorem is no great surprise.
Theorem 6.4: (RCAy) The following are equivalent:

i}y RT(1).

ii) BITY.
Proof: To prove that i) implies ii), assume RT(1). Let ¢ be a T formula {possibly

with set parameters). Fix y and suppose that Yz <y =z Yw (2 2 ,w). Define f

by

pn <t{y2 <y Tz <n¥w <t8(z,z,w)} if such an n exists,
=\ otherwise.
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Suppose X is an infinite set such that f (X)==t for some t;. Then
W <y —iz <toYw bz ,z,w) as desired.

Suppose, on the other hand, that no such monochromatic set exists. By RT(1),
t.hé range of f is unbounded, ie. \Yn =t (f (¢)>n). By AL comprehension, we
may construct a sequence <(l; >>;on such that for each (€N, # <t; .y and
[ (&)<f (#; 41). Define g by

g (i )=pz <y (Vz <f (t;)-1 Fw <t; ~0(x ,z,w ).
Let T be an unbounded monochromatic set for ¢, and let zg==¢ (T). Choose z,.
Since T is unbounded, there is some i €T such that f (f; )~1>2, By the definition
of g, —w <t;-0(zg,z9w). Hence, ¥z —w ~0{x¢,2,w), contradicting our very first
assumption.

To prove i} implies 1), we will assume BIIY. Let 7 :N—y. Suppose that

Ve <y —zYw (w>z—f {w)Fz ) By BIIY,
ez <y Sz <tVw(w>z—f (w)7#).

In particular, —J¢ Yz <y Yw (w >t—[ (w)séx). Let £y be such a . Then we have
\fz <yf (t +1)54%, contradicting the definition of [ . Thus, it must be the case
that —o <y Yz —w (w >z —[ (w)==z). Let 29 be such an 2. Then {t:f (t)=2q}
is the desired monochromatic set. i

By applying techniques from Chapter 5, it is now easy to show that RT(1) is
not provable in WKLy, In some ways, it is startling that a statement as natural as

RT{1) is not provable in a system as powerful as WKLy,
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Corollary 6.5: WKL HRT(1).

Proof: By Propositional 2 of Paris and Kirby [26], there is an initial segment I of a
model M of PA such that <IRyI>EIDIA-BIY. By Theorem 5.3,
<IRyI>FWKLg By Theorem 6.4, <LRpI>F=-RT(1). W

Since Theorem 6.3 implies that every w-model of WKLy is a model of RT(1),
we may immediately draw two additional conclusions. First, RT(1) is independent
of WKL, Secondly, WKL, is not w-consistent.

Many theorems of ordinary mathematics are equivalent to WKLy or ACA,.
RT(1) is an exception. As we have said, it is independent of WKL, Furthermore,
since every w-model of WKL, is a model of RT(1), RT(1) does not imply ACA,
over RCA, Since it does not fit nicely into the program of reverse mathematics,
one is tempted to say that RT(1) is an unimportant fluke. However, it does crop up

occasionally in the literature, in a variety of guises. As an example, we consider a

lemma of Rado.
Theorem 6.6: (RCA;) The following are equivalent:
) RT(1).

ii) (Rado’s Lemma) Let A=<lg; >;cn be a sequence of codes for finite

nonempty subsets of N. There is a choice function for A satislying

) Wy (e >b s (2)4)
if and only if for each infinite set ICN, the set A(I)=={j eN:—i elf GX%} is

infinite, where X“z‘ is the set coded by g; .
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Proof: To prove that i) implies ii), assume RT(1) and let A be as in the hypothesis
of ii). We must prove both parts of the biconditional statement. Suppose first that
for some infinite ICN, the set A{I) is finite. Then A(I) is bounded by some integer
d. Let f be any choice function for A. By RT(1), there is an infinite set JCI and
an integer ¢ <d such that for all 2 €J, f (2 )==c. Thus f does not satisfy prop-
erty 1).

Now we must prove the other half of the biconditional statement. Suppose
that for every infinite set ICIN, the set A(I) is also infinite. Define a choice function
J by the rule: f (i) is the greatest element of X, . If f does not satisfy property
1), then there is an integer d and an infinite set I such that for all ¢ €I, the max-
imum element in the set coded by a; is d. But in this case, A(I) is finite, contra-
dicting our hypothesis. Thus, f satisfies property 1).

To prove that it) implies i), suppose that RT(1) is false. Choose [ :N-—a such
that for each b < a the set {n EN:f (n )==b} is not infinite. Define A==<Ta; > ;N
by letting a; be the code for {f {¢)}. Then f is a choice function for A satis{lying
property 1}, However, A(N) is the range of f which is finite. Thus i) does not

hold.
Corollary 6.7 WKLOH Rado’s Lemma.

Proof: Immediate from Theorem 6.6 and Corollary 6.5. i}

6.2. Pairs

Given the resuits of the previous section, one might hope that Ramsey’s

theorem for pairs is better behaved. Unfortunately, pairs are even more unruly than
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singletons. It is open whether or not RT(2,2) or RT{2) imply ACA,. We do know
that WKL, does not prove RT(2,2) or RT(2). This result can be approached in
three ways. The first, and most obvious, is via the results of the previous section.

Theorem 6.8: RCART(2,2)-RT(1).

Proof: Assume RT(2,2) and suppose f :N—a . Define g [[NJ?—2 by

_{o if [ {n)=f(m).
9 (. m)=\ 1t [ (n)5£f (m).

Let H be an infinite monochromatic set for g. A finite pigeonhole argument shows
that g ([F]*)==0. Thus, for some b <Ca, f (H)=b. 1§
Corollary 6.9: WKL HRT{2,2).

Proof: Suppose WKL J—RT(2,2). Then by Theorem 6.8, WEKLg~RT(1), con-
tradicting Corollary 6.5.

Since every w-model of WKL, models RT(1), it seems feasible that the same
would hold for RT(2,2). However, monochromatic sets for RT(2,2) can code consid-
erably more information than that used in the proof of Theorem 6.8. Using the
clever construction of Jockusch, we can prove the following theorem. This result can

be viewed as the second proof that WKLy does not prove RT(2).
Theorem 6.10: There is an w-model of WKLg which is not & model of RT(2,2).

Proof: By Theorem 1.6, there is an w-model I' of WKLy such that if A€Sy, and a
is the degree of A, then a’ <0’ . By Theorem 3.1 of Jockusch [19], there is a recur-
sive f :jw]*—2 such that no infinite monochromatic set for f is recursive in 0 .

Since [ is recursive, f €Sp, so TEWKLy, but '=-RT(2,2). W
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Since RT(2,2) is more powerful than RT(1), it would be nice to know what
analog of Theorem 6.4 is provable. Unfortunately, the only known arguments make

use of an arbitrary numbers of colors. The following is the best result known.

Theorem 6.11: RCA—RT(2)—BIILJ.

Proof: We will work in RCAy. Assume RT{2) and ~BITY. Then for some Ig for-

mula § (possibly with set parameters) and some y €N, we have

1) Ve <y Sz Yu v 6(z 2 ,u,v), and

2} Wt Hz <y ¥z <t Hu v~z 2z ,u,v).

Define f :[N]>—N by

pz <s¥a <yYu <t o <s6(z,z,u,v)if such a z exists,
F {85 s otherwise.

Suppose that the range of / is bounded. Then by RT{(2), we can find an infinite set
X and a 24€N such that f ([X]%)==2, By property 2),
o <y ez <zg+1=lu o —b(z 2 u,v).

In particular, for some 24y, Su v =0(z g,z g, ,v ). Thus for some u €N,
v =0(z g,20,%0,v ). Pick s, €X such that ue<t <s. Then since f (£,s )==2,, We

have —v <6 8( 0,2 0% 0,¥ ), & contradiction.
Now suppose that the range of f is unbounded. We will derive another con-

tradiction. Define h 1y X[N]2—+N for # <y and & ,t EN by

pz <sWu <t —v <s0(z,z,u,v)if such a z exists.
hie,ts)= s otherwise.
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Define g :[Ni>—y by

g (t It )""—-“—*:pa, <y (h (:C it ,8 )m max ({h (-7. £, ).7 <y }))

By RT(2), we can find an infinite set Y and an zo<<y such that g ([Y]))=z, By

property 1}, for some z €N,

V“ 3“ 0(5‘:0?50}” v )

By property 2), for some z <<y,

‘V/Z <ZO+}“EU VU """19{3,‘ L% ,U,Y )

By Theorem 6.8 and Theorem 6.4, we may apply BII to find a £ €Y such that
Wz <zgt1=u <t Yo -0z, 4, ).
Since RCA, implies BE;{O, we may find an s €Y such that s >, s >zy+1, and
Vu <t v <s8(x0,70,%,v)

Thus h{2gt,s)<zg but A(eq,t,s)>2+1, contradicting ¢ (¢,s )==2¢. This shows
that the range of f is neither bounded nor unbounded. Thus the original assump-

tion of RT(2) and ~BII is false. [

The Ackermann function can be used to give a further indication of the proof
theoretic strength of RT(2). Although the function in the following theorem is not
the usual Ackermann diagonal function, it grows at approximately the same rate.
Theorem 6.12; (RCA,) RT(2}—Yr Jz(g(z,2)=2), where the function g is
defined by the three relations g{(02)=2+1, g(z+10)=g(z 1),  and

g (z+1,y+1)=g (2 ,g{z+Ly))
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Proof: We will work in RCA, using RT(2). Let (m),? denote the n™* digit in the
binary expansion of m . Define f ;:[N)?-+2! 7% by
[ ole g y=m 18 Y <t ((m)f=10Tw <oz <ylg (n,0)52).

f 1 exists by AL comprehension. By RT(2), there is an infinite monochromatic set
X for f 4. Let <Ia; ;N be an increasing enumeration of X. Consider the follow-

ing three cases.

Case 1: Suppose [ ([X]?)==2'*1-1. Then, in particular,

Aw <ao¥r <x19(0,w )55z, Since g(0,w)=w+1, we have z;<w+1<zo+], a

contradiction.

Case 2: Suppose I (X)P)=m, where O<m <2 -1, Let

p==pn <t((m)i=1). Then for 2,y €X such that x <y, we have
1) Hw <z Wz <y(g{r,w)s4z), and
2) n <r Yw <z T <y (g (n,0)—)

Define f 2:1\72—-1*2:‘0H by

[ oy )=m i Vn <aql(m)2=1e¥z <y (g (r,n)72))
By Theorem 6.8, there is an infinite monochromatic set for [ o Let Y=<ty >;en
be an increasing enumeration of such a set. If f o(Y)==0, then
Yw <oz yolg (r,w)=z), contradicting 1). Let s==pn Zao(f o{ ¥ o)), P540.
Then
3) Vez(g(r,s)s=z), and

4) Yn <s Je <yolg (r n)=2).
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By definition, g(r,s)=g(r-1,¢(r,s~1)). By 4), Tz <y g(r,s-1)==z), say
g{r,s~1)=z4. Since X is infinite, there is some z; €X such that z; >z, Thus, by
2), Tz <2y 40(9 (r—1,z9)=¢). Since g (r-1,z¢)==g (r s ), it follows immediately that
—z <zjarlg (r,8)=2}, contradicting 3).

Case 3:  Suppose [ 1([X]®)=0. Choose =z; such that =;>t. Then
[ 1= ,2; 41)7=0, so we have Yn <t Yw <2y Hz <z; (g {n ,w)=2). In particular,
Y <t —z{g{n,n)=2), as desired. ]

Theorem 6.12 leads to a proof of a slightly weaker result than Corollary 6.8.
We state the result and its proof, since the method used is proof theoretical, as

opposed to the model theoretic methods of Corollary 6.8 or the recursion theoretic

methods of Theorem 6.18.
Corollary 6.13: WKL |HRT(2).

Proof: Harrington proved that WKL, is a conservative extension of primitive
recursive arithmetic for 1Y sentences. Robinson [42] showed that the diagonal func-
tion g{z,z ) of Theorem 6.12 is not primitive recursive. It follows immediately that
WEKLo-Ae =2 {g (v, }==2). Given this, the corollary follows easily from Theorem

6.12. 1

6.3. Regressive Partitions

In this section we will consider 2 variation on the Erdds-Rado theorem similar
to one used by Kanamori and McAloon [22]. Let f be a partition of [N]" for some

n €w, and let A :N~+N. The partition f is h-regressive if and only if for every
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SE[NI", f (S)<<h{ min (8)). A set XCN is min-homogeneous for f if for each S
and T in [X]*, min (S)= min (T) implies f (S)=/ (T). The following theorem
provides an interesting contrast to the situation for the usual Ramsey’s theorem.
Here, the situation for pairs is clear.
Theorem 6.14: {RCA,) The following are equivalent:
i} ACA,.
ii) For every n€w and every [ which is an h-regressive partition of INJ®,
there is an infirite min-homogeneous set for [ .
iti) Let f be an h-regressive partition of [N]>. Then there is an infinite min-
homogeneous set for f .
Proof: TFirst, we will prove that i) implies ii). If » =1, then N is min-homogeneous
for f . By Theorem 1.5, it suffices to prove i} for arbitrary n €w using Ramsey’s
theorem for (2n —1}-tuples. Fix n €w such that » >1. Let f be an A -regressive

partition of [N|”. Define a partition g (NP2 by

0if f (2q, .+ -5 @ =S (@p,¥0 - -, Y ),
g‘(ﬂ?l,.’b‘g, e T Yl s Un )“"_““ 1 otherwise.

Let H be a monochromatic set for g .
First, we claim that g {[H]**"')==0. Suppose not. Let z(€H and choose
h{zg)+1 disjoint sets Xo, . . ., Xj(zger In [H]" ! such that for all i <h(zo)+1,

2o< min (X;). Since g ({{zojU U Xy 77 =1,
j‘Sh (180)‘1'1

F {agdUuX; 54T ({2 oJUX;)
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for all ¢ <j <h(zq)+1. By a finite pigeonhole argument, f ({zJUX;)>h (2} for

some 1, contradicting the fact that f is k -regressive. Thus, g ([H]*" 1)=0.

Now we claim that H is min-homogeneous for f . Fix z¢€H and choose
X, Xoe[H" ™ such that 2,< min (X;UX,). Choose XG&[H]*™ such that
min (X3)> max (X3UX,). Since ¢ ({zopUX UXg)= g ({z o UK UX,)=0, we have

[ {z o)X= | ({20}UXg)= [ {{2o}UXy), as desired.

Since iii) is a special case of ii) we need only show that iii) implies i). Let
g :N—N be an injection. By Theorem 1.4, it suffices to prove the existence of the
range of ¢ using ii}. Define the auxiliary function » by r (i ,n)=1if

j <n(g(5)=1), and 7 (i ,n )=0 otherwise. Define the partition f :[N]>-N by

-

f{m,n )mf}fi r{i,n).
P
The partition f is clearly 2™+ regressive. By iii), there is an infinite set X which is
min-homogeneous for f . Let <l2; > be an enumeration of X. It is easy to see that
n€Ran(f ) if and only if f (2, ,,+1) is congruent to 1 mod 2**1 Since Ran(f )
is A in X, Ran(f ) exists. i

The following recursion theoretic porism is the Clote-style 0' basis result [4]

corresponding to the Kanamori and McAloon independence result [22].

Porism 6.15: There is a recursive function h, and a recursive h -regressive partition

f :[N]2—+N, such that O' is recursive in every infinite min-homogeneous set for f .

Proof: Let g be a recursive function with 0 recursive in its range. Construct f

as in the proof of the preceding theorem. I
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6.4. Conjectures

In this section, we present two conjectures concerning the strength of RT(2,2).
Previous work of Jockusch, Kirby, and Paris supports these conjectures. A program
is proposed which could lead to the proof of one or both of the conjectures. First,

we state both conjectures.
Conjecture 6.16: WKLg + RT(2,2)—ACA,.
Conjecture 6.17: RCA, + RT(2,2)HACA,,

The proof of Conjecture 6.16 would provide a solution to the well-known 2-3
problem. In 1972, Kirby and Paris [26] wished to determine if every initial segment I
of a model M of PA satisfying <IRpI>FRT(2,2) is strong. At this time, no
counterexample has been found. By Theorem 5.3, Conjecture 6,16 implies that no

counterexample exists.

1t seems that if a proof of Conjecture 6.16 exists, it would already have been
found. However, most efforts in this direction have actually been attempts to prove
that ROA, + RT(2,2)F-ACA,. Jockusch [18] conjectured that there is no recursive
partition of pairs such that 0' is recursive in every infinite monochromatic set. This

conjecture would be an easy corollary to a proof of Conjecture 6.17.

Clearly, if both Conjecture 6.16 and Conjecture 6.17 are true, then WKLy
plays an instrumental role in the proof of Conjecture 6.16. One way to prove Con-
jecture 8.16 is to fix a function [ and find a partition g:[NJ>—k for some k €w such
that the range of f is A definable in every infinite monochromatic set for ¢. We
propose to use WKL, to build such a partition. To carry out the proof, some sort

of finite combinatorial lemma is needed.
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The combinatorial lemma should be a type of finite anti~Ramsey theorem. This
lemma will involve a notion which we will call big finite sets. Pigness must satisfy

the following four properties.
1) “Xis big " is A7 definable.
2) Every infinite set contains a big set.

3) If zg,2y, . .., %, is big, then every infinite set contains an element y such

that g, . .., 2,5,y is big.

4) There is a & €w such that for any n €N and f :n —n, there is a partition
g:ln)*~k such that if T8y -y Cn is big and monochromatic for g,
then ¥/t (a;_ 1<t <a;f (t)=z)

The proof of Conjecture 6.16 follows immediately from the proof that any
predicate satisfies properties 1) through 4). For a fixed f :N—N, one constructs the
tree containing k -colorings of [n 12 given by property 4) for each n. WKl is used
to find a path through this tree, which yields a k-coloring of [NJ2. RT(22) is
applied {possibly & times) to find an infinite monochromatic set, H, for this parti-
tion. Properties 1) and 2) are used to find an infinite sequence of big subsets of H
with increasing minimums. By properties 3) and 4), each big set determines the

range of f below its minimum. In this way, the range of f is shown to exist.

It seems reasonable that a predicate satisfying properties 1) through 4) exists.
Properties 1), 2), and 3} are easily satisfied. For instance, the predicate “X has car-
dinality 27" satisfies these properties. However, this predicate does not satisfy prop-
erty 4). Another indication of the feasibility comes from weakening property 4) to

require partitions ¢ :[n [*—2. With this weakening, the predicate “X has cardinality
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at least min (X)+3” satisfies all four properties. However, RT(3,2) must be used in
place of RT(2,2) in the argument outlined above. This yields a proof that

WKL, + RT(3,2)}-ACA,, a weaker result than Theorem 1.5.

If the appropriate predicate can be found, it should be straightforward to prove
or disprove Conjecture 6.17. Given an actual partition to manipulate, it should be
possible to carry out recursion theoretic analysis to obtain information about Conjec-
ture 6.17. Unfortunately, determining whether or not a given predicate satisfies
property 4) is very difficult. Computer verifications are impractical except for cases

which are easily checked by more direct proofs.

Finally, it is noteworthy that the proof that a predicate satisfies properties 1)
through 4) is actually a sort of finite anti-Ramsey theorem. Property 4} states that
for some finite coloring there is no monochromatic set of a certain sort. The usual
approach is to use infinite combinatorial theorems to prove finite results, as in the
original proof of Ramsey’s theorem [40]. If the program to prove Conjecture 6.16 is

successful, it will be an interesting reversal of this technique.



CHAPTER 7

HINDMAN’S THEOREM

In 1974, Hindman proved an infinite version of s theorem of Folkman [18].
Hindman’s theorem asserts that for any finite partition of w, there is an infinite
subsequence of w such that the set of finite sums of elements from the subsequence
forms a monochromatic set. Hindman’s theorem was formalized and analyzed in
subsystems of Zy by Blass, Hirst, and Simpson [3]. At the conclusion of this work,

the exact proof theoretic strength of Hindman’s theorem was still undetermined.

After reviewing previously known results, this chapter examines two attempts
to determine the proof theoretic strength of Hindman’s theorem. In the second sec-
tion, a version of Hindman’s theorem emphasizing algebraic content is explored. The
last two sections are the result of applying the model theoretic methods of Chapter 5
to the problem. Although the exact strength of Hindman’s theorem remaims a mys-

tery, both avenues lead to interesting results.

7.1, Previous results

This section reviews the work of Blass, Hirst, and Simpson [3]. All the proofs
have been omitted, with the exception of Lemma 7.3. We begin with two formal
versions of Hindman’s theorem. The first version, which we will call HT, is
Hindman’s original statement involving finite sums of integers. The second version,
called HTU, was used by Baumgartner [1], and involves unions of sets. In this ver-

sion, the theorem is stripped of any reference to the algebraic structure of N, and

118
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becomes purely combinatorial. The following definitions give the two versions of the

theorem.

Notation 7.1: The following statement will be denoted by HT: If f N+l 18 8
finite partition of N, then there is an infinite set XCN such that for some 1 <[,
§ {FS(X))==i, where F8(X) denotes the set of all sums of nonempty finite subsets of

X.

Notation 7.2 The following statement will be denoted by HTU: If f P (N
is a finite partition of P n(IN), then there exists an infinite set X of pairwise disjoint
elements of P . n(N) such that for some 7 <1, f (FU(X))==t, where FU(X) denotes

the set of all unions of nonempty finite subsets of X.

We will now show that HT and HTU are actually the same statement.
Lemma 7.3: (RCA,) The following are equivalent:

i) HT.

#) HTU.
Proof: The proof that i) implies ii) uses the proof of Lemma 2.3 in {17]. Assume

HT and let f P n(N)—! be a finite partition of P n(N). Let mN—=P n(IN) be

the bijection defined by
woe L op ;3 L
{n)={x <n .mt@;—)——l( mod 2)}.

The partition f induces a partition g :N—{ defined by ¢g(n)=f (f{n}). By HT,
there is & ¢ </ and an infinite set XCN such that g (FS(X))=c . Let <z; >ien be

an increasing enumeration of X. We will construct a sequence <y; > enysuch that
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F8(<y; > en)CFS(<a; > en);

and 2° ]y, .1 whenever 2°-1<y . Set y,=u, and k;==2. Suppose y, and k, have
been chosen. Let & be the maximum integer such that 2° 1<y, . Consider the set
Se={u; 1k, <t <k, +2% }. By the finite pigeonhole principle, there is a j <2 and a
TCS such that | T|=2% and z €T if and only if 2 ==j ( mod 2°). Pick the least

such 7 and T. Let y, .= Y, = and let &, .=k, +2% 1. Qlearly, <y, >peni5 2
zeT

sequence with the desired properties. Furthermore, for i3£7, ’r"—](yz-)ﬂ?‘"}‘(yj =P,

and 7y +y; Y=ty )U'.r""l(yj-). Since for any finite set SCN,

F U Ny =g (X y; )=c,

j €8 jE8
the set Y={7"(y; ):¢ EN} is the desired monochromatic set for HTU.
To prove that ii) implies i), use 7' to induce a partition on P .n(N) and map
the monochromatic set for FI'TU back onto N by 7. Since the monochromatic set for

HTU consists of disjoint sets, the result follows even more easily than before. |

Throughout the remainder of this chapter, HT and HTU are used interchange-
ably. We retain both notations only to clarify the applications of Hindman’s
theorem in proofs.

The following three theorems capsulate the results in [3] concerning the proof

theoretic strength of Hindman’s theorem.
Theorem 7.4: RCA—HT—ACA,.
Theorem 7.5: {(ACA;") If f;:N—l is a countable sequence of finite partitions of

N, then there is an infinite sequence <z; >;¢n such that for each ¢, there is some

¢; < l; such that f; (FS(<$J iz ))mcz .



121

Corollary 7.6: ACA|-HT.

7.2. An Algebraic Version

In this section, we present an algebraic version of Hindman’s theorem. The
original intent was to emphasize the algebraic content of Hindman’s theorem, and
then analyze its proof theoretic strength using work done by Friedman, Simpson,
and Smith on countable algebra in subsystems of Z, [10]. Unfortunately, this refor-
mulation does not lend itself to such analysis. Furthermore, results later in the sec-

tion indicate thak stronger algebraic analogs are unlikely.

The following reformulation of Hindman’s theorem is in terms of Boolean rings.
Chapter 4 contains all the relevant definitions and fundamental results. As in
Chapter 4, we will use the phrase “infinite Boolean ring” to refer to a countably

infinite Boolean ring.

Definition 7.7: The following statement will be denoted by HTA: If f :R—{ 0}~
is a finite partition of an infinite Boolean ring R, then there is an + </ and an

infinite subring SCR such that f (8)=1.

We will now show that this algebraic reformulation of Hindman’s theorem is

equivalent to the versions in the preceding section.
Theorem 7.8 (RCA,) The following are equivalent:
iy HT.

i) HTA.
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Proof: To see that i) implies ii), assume HTU. Let f :R—! be a finite partition of
an infinite Boolean ring R. By Corollary 7.5, HTU implies ACA, Thus, we may
apply Corollary 4.13 to ind <s; >;¢n, an infinite sequence of pairwise zero divigors

in R. Define a partition g P n(N)—! by g(A)==f (3] s;), for all A€P (N). By
icA

HTU, there is an infinite sequence of disjoint elements of P (N}, <A; >;¢en, such
that ¢ is monochromatic on the finite unions of elements from <A; >;en. Let Ay

denote | JA;, and define S by
jed

S={ ¥ 51 JEP NN},
1GA s

S is closed under sums since R has characteristic 2. By the definition of s;, 8 is also
closed under products. Thus 8 is s subring. By definition of f and A;, for some
E<l, g(8)==k.

To show that ii) implies i), assume HTA. Let R denote the Boolean ring on
P n(N) where + denotes symmetric difference and » denotes intersection. Let
[ P on(N)—! be a finite partition of P .n(N). Obviously, f is also a finite parti-
tion of R. Let S be an infinite monochromatic subring. Since S is a Boolean ring of
finite sets, by Lemma 4.11, there is a sequence <(s; >; ¢ of elements of 8 which are
pairwise zero divisors. Note that <ls; >;en is also a sequence of disjoint elements of
P_n(N). Since s;-+s;==s5;Us; for all i5#j, every finite union of elements from
<8; >ien s in 8. Thus, for some k <I, [ (FU(<{s; >;en))=k . |

While Boolean rings are not a commonly studied structure, they seem $o be
ideally suited to the statement of Hindman’s theorem. The following negative results

show that the class of rings considered cannot be arbitrarily broadened.
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Theorem 7.9: HTA can not be extended to include all rings.

Proof: Consider the integers. Pick any of the partitions commonly used as coun-
terexamples for an infinite version of van der Waerden’s theorem [13]. No infinite

monochromatic subring can exist. i

Theorem 7.10: HTA can not be extended to include all rings of finite characteris-
tic.
Proof: Let R be an infinite ring of characteristic 3. Let <Ir; >>; oy be an enumera-
tion of its elements. Color #; blue and ry+ry 1‘ed. For j>1, if r; hasn’t been
colored, color r; blue and r;+r; red. There is no monochromatic subring for this
coloring. |

Ancther way to extend the streagth of H'TA is to restrict the class of accepé-

able monochromatic substructures. The most obvious candidate, an ideal, is elim-

inated by the following theorem.

Theorem 7.11: HTA can not be strengthened by requiring monochromatic ideals

rather than subrings.

Proof: Let R be the Boolean ring on P on{N) with + denoting symmetric difference
and = denoting intersection. Partition R by coloring each element by the parity of

its cardinality. R has no monochromatic ideals. .

One might hope to “improve” HTA by restricting attention to Boolean alge-
bras, and seeking monochromatic subalgebras. This also fails. Simply color each ele-
ment the opposite color from its complement. However, the following extremely

unnatural statement Is true.
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Theorem 7.12: (RCA,) The following are equivalent:
) HTA.

ii} Let B be a countably infinite Boolean algebra and f :B—l a finite partition

of B such that Yo €B(f (b)=7 (6°)). (f (0) and f (1) are undefined.} Then

there is an infinite Boolean subalgebra of B whick is monochromatic for f .
Proof: To prove that i) implies ii), let B and f be as in the statement of ii).
Apply HTA to find S, a monochromatic subring of B. The set

C=={z €B:z €8\/1+z €8}
is a monochromatic subalgebra of B.

To prove that ii) implies i), by Theorem 7.8 it suffices to prove HT'U using i),
This is done by applying ii) to the Boolean algebra of finite and cofinite subsets of N

and imitating the proof of Theorem 7.8. |

It is also possible to somewhat strengthen the conclusion of HTA if we restrict
the hypothesis. The following theorem uses the structure of Boolean rings of finite
sets to achieve this end.

Porism 7.13: {(RCA,) The following are equivalent:

i) HTA.

if) Let R be an infinite Boolean ring of finite sets and f :R~»{ a finite partition
of R. Then there is an infinite monochromatic subring of R which is iso-

morphic to R.

Proof: To prove that i) implies i}, apply i) to a Boolean ring of finite sets to find S,

» monochromatic subring of R. S is a Boolean ring of finite sets. Using the
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construction in the proof of Theorem 4.10, it is easy to show that R is isomorphic to

S,

To prove that ii) implies i), use i) to prove HTU as in the proof of Theorem
75. IR

Generalizing the Boolean ring of finite sets in the statement of Porism 7.13 to
an arbitrary Boolean ring results in a false statement. To see this, let R be a
Boolean algebra and f be a partition as in the example preceding Theorem 7.12.
Since no monochromatic subalgebra exists, no monochromatic subring isomorphic o

R exists.

7.3. Galvin Ultrafilters

In this section we begin to apply the methods of Chapter 5 to Hindman’s
theorem. Two concepts, pegged Folkman sequences and Galvin uitrafilters, are
introduced. In an ultrapower modulo a Galvin ultrafilter, pegged Folkman sequences
of nonstandard length exist. This section uses this fact to prove the slightly
strengthened version of Folkman’s theorem given in Theorem 7.19. The application

of this material to Hindman’s theorem is explained in the next section.

Definition 7.14: Let f :N—I be a finite partition. Given an element y €N, the

pegged Folkman sequence of y (for f ) is a strictly increasing sequence <& > <k,

defined by
o =pz <y (f (FS(<z;>; U,y })=1 (v))-

The pegged Folkman sequence of y may be empty. In this case, k£ ==0. The length,

k, of the pegged Folkman sequence is denoted by L{f ,y)
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Definition 7.15: A (restricted) ultrafilter U on a set (Np) is called Galvin if
WVXeUTy eX {z—y:z >y \z €X}eU.

Galvin and Hindman referred to Galvin ultrafilters as almost downward transla-
tion invariant ulirafilters. Although their terminclogy is more descriptive, ours is
much shorter. Assuming the continuum hypothesis, CH, Hindman’s theorem can be
viewed as a proof of the existence of Galvin ultrafilters on w. This yields the follow-

g lemma.
Lemma 7.16: Assuming CH, there is a Galvin ultrafilter on w.

Proof: For the proof that, assuming CH, Hindman’s theorem is equivalent to the
existence of a Galvin ultrafilter on w, see [17]. For & proof of Hindman’s theorem, see
1s]. N

The next step is to use a Galvin ultrafilter on w to show the existence of arbi-
trarily long pegged Folkman sequences. This is done by taking an ultrapower of an
w-model by a Galvin ultrafilter. In such an ultrapower, the pegged Folkman
sequence of [id | is unbounded in w. An application of Lo#’s theorem proves the
sheorem. We state the result for models of RCAy, since in this way we can eventu-

ally eliminate the use of CH.

Lemma 7.17: (CH) Let I=RCA, be an w-model. Let f :N—I be a finite parti-
tion such that f €Sp. Then there are arbitrarily long pegged Folkman sequences for
[, that is,

Tz =y (L(f v )>2).
Proof: Let I' and f be as stated. Let V be a Galvin ultrafilter on w as provided

by Lemma 7.16. Let U=8yNV. Then U is a restricted Galvin ultrafilter on Nr.
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Let [¢d ] denote the element of T[Ny containing the identity function. Let <y; >
be the pegged Folkman sequence for {id] in JJyNp. We must determine the
appropriate range for the indices. It <y; > is an infinite sequence, then we are
done. To see this, let HUNF* be the expansion of J[yNr to a model with interpre-
tations for f and L. If <y; > is an infinite sequence, then for any n €w,
HUNF* =Ty (L(f ,y)>n). Thus, by Porism 5.17 and Theorem 5.12 part iii}, for
any n €w, METy (L(f ,y)>n). Since I' is an w-model, I'F=Y/2 Hy (L(f ,y)>z), as

desired.

1t remains to show that <Cy; > is an infinite sequence. We will actually show
that < y; >Mw is unbounded in w. Since Np==w, U is additive, so for some ¢ </,
{2 €Np:f {2 )=c }€U, and equivalently, [TuNp =7 (lid])=c. Let <g;>;; be
a (possibly empty) initial segment of <y; >>Mw. By the definition of <y; >, we have

HUl\‘TP”“:Jr (FS({yg - - -, Yp-plid [}))=c.

By Porism 5.17 and Theorem 5.12 part iii), we may define X&S5p such that

Xm{ﬂ’ >ykm1:F{:f (FS{{yD: coe s Yo }))ﬂc }GU

Since U is a Galvin ultrafilter, we can find an element y; €X and a set YEU such

that
Ye={a -y, x>y Nz €XFEU.

Since v, €X, M'F=f (FS({yo, - - -, Ve_1.¥s 1))==c. Furthermore, z €Y implies 2 EX

and 2 +y; €X, so for any 2 €Y,

I‘l':f (FS({yﬂ: - YVEL® }))wf (FS({@]O, sy Ypen® +yk }))Zc
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Since YeU, by Porism 5.17 and Theorem 5.12 part i), v, witnesses that

ToNe' =2y <u £ FS{yo, - - - sy lid[}))=e

Thus < 9; =>;<k 18 & propex initial segment of <y; >Mw. As stated above, this

suffices to complete the proof. |

Porism 7.18: If T is a countable wmodel of RCAy CH is not needed o prove

Lemmsa 7.17.

Proof: CH is used only to find the Galvin ultrafilter V on the full power set of w.
Any countable w-model of RCAgy can be expanded to a countable w-model of
Milliken’s theorem, and a restricted Galvin ultrafilter V can be found on this model,

using the construction in Theorem 7.25. B

Lemma 7.17 can be considerably strengthened. The following theorem shows
that there is a recursive function which gives an upper bound for the location of a

pegged Folkman sequence of a given length.
Theorem 7.19: There is a total recursive function g such that for any finite parti-
tion f :N—k, and for any n€w, there is a y<g{max{n,k)) such that
L{f y)>n.
Proof: We will work momentarily in the real world. Suppose that there is no
bounding function whatsoever. Let & be the least integer such that for all & there is
a partition f :b —Fk such that Yy <bL(f ,y)<k. Thus for every b there is a par-
tition f :b —k such that Yy <b L({f )<k,

Now, move to I', a countable w-model of WKLg. The tree T consisting of all

finite sequences o of integers less than & such that ¥y <h(o)L(o,y )<k is defined in
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I and infinite. By WKLy, T has an infinite path, which is a partition violating

Lemma 7.17. Thus, a total bounding function exists, and can be defined by

g (n)=pt (¢f t—n —y <t LS y)>n).

Since the formula defiring g consists of a p-operator applied to a By formula, g is
recursive. Note also that since I' is countable, the use of Lemma 7.17 may be

replaced by Porism 7.18, so CH is not needed. |

7.4. Milliken’s Theorem

Milliken’s theorem is a combination of Ramsey’s theorem and Hindman’s
theorem. In Theorem 7.22, we relate Milliken’s theorem to the extended version of
Hindman’s theorem stated in Theorem 7.5. This allows us to prove analogs of
Theorem 7.4 and Corollary 7.6. We conclude the section by relating Milliken’s
theorem and Galvin ultrafilters, completing the development started in the previous

section.

As with Hindman’s theorem, Milliken’s theorem may be expressed either in
terms of sums or in terms of unions of finite sets. For XCN and n €w, we will use

the notation <X ¢ to denote the collection of all sets Ye={ 3} a4 <{n}, where
x A

for each 1, A;EP_N(X), and i< j<n implies max (A; )< min (A;}. For
XCP (N) and n€w, we will use <X>J to denote the collection of all sets
Ye={UA; i <n} where A;EP.n(X) for each 4, and i< j <n implies
max (UA; )< min (UA; ). With this notation, it is easy to state the two versions of

Miliken’s theorem.
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Definition7.20: i) The following statement will be denoted by MT: For n €w, if
f [NJ* — is a finite partition of [N]", then there is an infinite set XCN such that

for some ¢ <!, [ (<X >¢)=1.

ii) The following statement will be denoted by MTU: For né&w, if
1P o (I))? —1 is a finite partition of [P n(N)|", then there is an infinite set X

of pairwise disjoint elements of P .n(IN) sueh that for some ¢ <1, f (<X> [)==i.

As for Hindman’s theorem, the sum and union versions of Milliken’s theorem

are essentially the same statement. The following Lemma parallels Lemma 7.3.
Lemma 7.21: (RCA,) The following are equivalent:

i) MT.

i) MTU.

Proof: Use the bijection between P n(IN) and N introduced in the proof of Lemma

73. I

We now prove that Milliken’s theorem is equivalent to the strong version of
Hindman’s theorem given in Theorem 7.5, and derive analogs of Theorem 7.4 and

Corollary 7.6.
Theorem 7.22: (RCA,) The following are equivalent:
i} MT.
ii) (Theorem 7.5) If f;:IN—; is a countable sequence of finite partitions of N,

then there is an infinite sequence < x; >;n such that for each ¢, there 1s some

¢; <l; such that f;(FS(<z; >;5;))=.
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Proof: To prove that i) implies ii), assume MT and let f;:N—/ be a countable

sequence of finite partitions of N. Define g NP2 by

0if Vi < (fily)=/f:(2))
g(z,y,2)= 1 otherwise.

By MT, we can find an infinite sequence X==<{u; >, N such that z; >¢ for all ¢,
and ¢ Is monochromatic on <X>£. An easy pigeonhole argument shows that

g (<X >)=0. To see that X is the desired set, fix ¢ and choose
Ay AsEP o (X{z; 15 <i }).
Let z€X such that 2> max (AjUAs). By the definitions of ¢ and X,
g (2.1, 5A 0 =g (2,_1,5A,,2 ), s0
Fi(BA=f;(2)=F;(EAs),
as desired.

To prove that ii) implies i), we assume ii) and use an external induction argu-
ment to prove that for each n €w, Milliken’s theorem for n-tuples holds. To sim-
plify notation, we will use the finite union variants of both i} and il). We leave it to

the reader to verify that the proof of Lemma 7.3 can be applied uniformly to ii).

Since Milliken’s theorem for singletons is Hindman’s theorem, the case for n ==1
is trivial. Suppose that Milliken’s theorem for k-tuples holds for all k <m. Let
JPon(N)® —! be a finite partition of [Pon(N)]". For each j€N, let

l; :( P, (j)]“'ll Choose an enumeration e such that for all j €N,
i <lie(j,1)=X « XePo; ()"

Define a sequence of partitions g; :P o n{IN)— T[] pi by
i<l ,
i
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0 if min (X)<j VP ; ()] =0
H pif (e (7 )XY otherwise.
J

g (X)=

th

Here p; denotes the ¢* prime. Intuitively, g; codes the action of f on (n-1)

tuples of subsets of 5. Applying ii) yields an infinite inereasing disjoint sequence,

Xe=<X; >ienCP o ~n(N}, such that

Vi by < I1 pd (9; (FUIX; > ;55 ))==b;).

i<

Define h:<X>7"1—! as follows. For (A4, ..., A, DECX > let Y be the

least element of X such that for all j <n -1, max (A;}< min Y. Set
h (Al-’ [ J‘A'n—-l)ﬂf (Al_, e v g Aﬂ.-—l)Y)'

We now apply Milliken’s theorem for (n —1}-tuples to %, to find an infinite increasing
disjoint sequence Z=<Z; >; nyCFU(X) such that for some ¢ <, we have

h(<Z>0 N=c.

We claim that f (<Z>)==c. To see this, let {Vy, ..., V,}e<Z>, and
et W be the least element of X such that min (W)> max (V, ). Let
t==min (V, UW). Since W)V, eFU(X),

g (Va J=9: (W),
so in particular,
f (VE; e Vn-—l:Vn )wf (VEJ L JVnml:W)'

By the definition of W, A(Vy ..., V,4) =/ (V. .., V,4,W) and since

vy, ... , Vaate<Z>5"1 h(Vy, ..., V,_y)==c. Summarizing, we have
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F{Vy, ...,V )=¢
forall {Vy, ..., V,}e<z>" W
Corollary 7.23: ACAS |-MT.
Proof: Immediate from Theorem 7.22 and Theorem 7.5. [
Corollary 7.24: RCA—MT—ACA,.
Proof: Immediate from Theorem 7.22 and Theorem 7.4. An alternate proof is fo
note that Milliken’s theorem for triples implies RT(3), simply by considering only
those elements of <X >¢ in which |A;|=1 for all i <3. The result then follows

immediately from Theorem 1.5. JIif

We will now examine the connection between Milliken’s theorem and Galvin
wltrafilters. Immediately following the proof of Theorem 7.25 is a discussion of its
impact on the program of applying model theoretic methods to determine the
strength of HT.

Theorem 7.25: Let I be a countable model of RCA, Then the following are

equivalent:
i) TF=MT.
i) There is an additive restricted Galvin ultrafilter U on Np such that

Sp=8y,.,; 1.6 such that ¥y is a P-clone.

Proof: To prove that i) implies i), we imitate Hindman’s proof that Hindman’s
theorem implies the existence of Galvin ultrafilters. MT is used to insure that

Spr\BF’U.
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The following notation, some new, some old and abused, is helpful. Ny will
denote the nonzero elements of Np. P will denote P on(Np). For X&Sp and o €N,
X-a ={y-z:y EXN\y >a }. For Xe8p, X*={z €Npz ¢X}. Given k €Ny, (k) wili
denote the ideal generated by k, ie. (k)=={n+k:n ENp}. For aset X&Sr and any
jENp, the 7% projection of X is defined by X{(j)={k€Np(s k), €X'}, where
(,), is the pairing function used in Chapter 3. Finally, for 2,y ENyp, v €y will
mean that the ™ prime divides y, i.e. that 2 Is in the set coded by y in the prime

power coding of Chapter 5.

Now we will slowly define U. Let <A, >, c, be an enumeration of the sets in
Sp with Ag=Nrp. Let <f,>.cu be an enumeration of the total functions in Sp
such that f ¢ is the zero constant function. For each n Ew, we will inductively define

sets 11, , Z, , and X,, such that the following five properties hold.
1) Z,=A, orZ,=A,.
2) 1f i < j then {II; (k ):k eNp} C{II; (k):k ENp}.
3) For some t ENp, I1, (¢ )=Z, .

4) 1f FEP then there is a I-infinite subset B of M I, () such that for each
i€rF

2 €B there is a f, satisfying
I, (6)C N 0 (FN(N s (5)-2 )
jEF JEF

5) For every z €Ny, z €X,, if and only if 7 eNpYyel, (F)zefa(y))

Let Zg==Aq and o= () {j}x(7). Properties 1} and 2} hold trivially. Since
j€Np

Zo=Nrp=TI1(1), property 3) holds. If FEP, then M Mo{s J=(k ) for some k €Ny,
jeF
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Since (k)N({k )7 }==(k ) for every j&(k), property 4) holds. Finally, since f o(; )=0
for all § €Ny, property 5) holds with Xo=6.

Suppose I1;, Z;, and X; are defined and satisfy properties 1) through 5) for all

j<n. Let I, €Sp such that

Vi < n e =k (T (¢ )==11,(¢ ), and

ViVi (i 75 =T, )AL, (7).
Since n €w, II; €Sp for ¢ <n and TE=ACA,, such a IT, exists. Let

V= |J ({7 }x NG

jE€Np iy

V is also in Sp. Now V(1)=11; () for some ¢ <n and j ENp. By property 4), there
is a least #,ENp and a least ¢ €Ny such that 2 ,€V(1) and L YCVIN(V(1)-2 ).
Let m (1)=1 and m (2)==t-+1. Then we have V{m (2))TV(m (1))N(V(m (1))-z,).

Assume that we have chosen 2, and m(s+1) for each s <r €Np, such that

s~-1

z, EV(m (s)), 7, >k¥1m,-¢ , m{s+1)=>m(s), and
V{m (s +1))CV(m (s ))N(V{(m (s )}z, }. Since
Ik 1<k <m (r )} C{I1; (4):d €Np}

for some § <n, and since V{m (r )= M IL,7(k), by property 4) we can find an
E<m(r)

infinite subset B of V(m({r)) and, for each z in B, a {, such that we have
IT; (¢, )YCSV(m (r NN(V(m (r }-z). Note that we can find arbitrarily large 2 of this
sort, and that IT; (¢, ) is T1,(b) for some b. Thus we can choose the least integer z,

and the least b such that z, > Yz, and IL (6 )CV{m (r DN(V(m (r ), ). Leb
k<r
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m (r +1)=max {b ,m (r )+1}. Then V(m{r +1)CV(m (r ))N(V(m(r))-=z, ) as
desired. By arithmetic comprehension in I', the sequences <&, >,¢n, and

<m (s )>,eny are in Sp.

We now show that F8(<z, >,,)CV(m(r)) for all r €Np. Since for all
i<j, z;€Vim{{)) and V(m (i )2V{m (), we have that <z, >,», CV(m(r))
for all r&Np. Suppose that for & >2 and for all r, we have that for every
JeP . ({2 €Npx >r}), the inclusion FS(<2; >;jCV(m(r)) holds. Let
KeP ) 1(Np), s=min (K), and L={/€K:iz%s}. Then it follows that

LeP . ({x €Npz > +13}), so %:L% €V{m (s -+1)) and V{m (s +1))CV(m (s }}-z, .

Thus,

¥ w=n, + 3, 5, €V(m (s ),
i€k =

so Y, a;EV(m(r)) for all r <<s. By induction, it follows that the inclusion
i €K

FS(<l#; >; >, JSV{m(r}) holds for all r.

The next step is to apply Milliken’s theorem to a partition h of

[F8( <, >3€Nr)]3' Since Y}z, <z,, there is a natural Dbijection between
§<r

FS(<z, >, eny) and P given by A)= 3 , for all A€P. MTU insures that there
s €A

is a sequence <y, >>;en, such that for some constant ¢, h(<<y, >SGNF>§’)"—"—WC.

The sequence can simultaneously be chosen so that if <7, yy=>,%, and
s €l

y; ==Y, 3,, then max 2, < min =z, . The partition h is defined in terms of two
7 scd sl sed

auxiliary funetions. For (b,c,d )E[FS<r, > cn® such that b <c <d, define A,

and A4 by:
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0 if beA,
hy((b e, d )= 1 if béA,

0 if Yt<b(tef (c)iftef,(d)).
hol(b e ,d )= 1 otherwise.

Let h{(b,c,d))=2hy((b,c,d))+h((b,c,d)). Let <y, >;en, denote the mono-
chromatic sequence of color ¢ given by Milliken’s theorem and described above.

Note that <y, >, enESr. An easy pigeonhole argument shows that ¢ €{0,1}.

We can now define Z,, II, and X, . Let Z,=A, if ¢=0, and Z,=A] if

¢ ==1. Let
S, ={ ¥ 4, JEP/\ min (J)=n }.
s€d
Define 11, by
Z, if t=1

I, (¢ )= T1(£ /2) if 1 is even.
St -1)/2 if t>1andt isodd.

Finally, let X, =={k €Npk €f , (¥ 1)} Note that I, Z, , and X, are all in Sp.

We must now verify properties 1) through 5) for Il , Z, and X, . Properties
1), 2) and 3) follow trivially from the definitions of Z, and II,. To verify property
4), let FEP and write F=F;UFy, where F, consists of even integers and Fy consists
of odd integers. If Fy==0, then for some m <n, =k (11, (§)CIL,, (k) for every
j€F. By the induction hypothesis, property 4) holds. If Foz£@, then for some &,

S C M M, (7). If Fy==0, then 5y C O, (7). If Fiz20, then V(IS N L)
J€F, jeF J€Fy

for some |. Since 8, CV, we have in either case some r such that 8, € M. (5 )-
jerF
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Let B=={y;:j =7 }. Fix y,€B. Then S,, 1€, and

Sm »!—Ig_sr H(Sr ~Ym )g( mFﬂn (.7. )"ym )
i€

Thus property 4) is satisfied. Finally, we verify property 5). Fix 2 &€Nrp. Then
z€X, if and only if z€f, (¥e+1)- Since ol << s >seN§>§)ﬂ0, for every
2€8, 11, 2E€f,(z) if and only if z€/, (¥, 4+1)- Since S, 4 y=II, (2(2 +1)-+1), prop-
erty 5) is satisfied. This completes the inductive construetion of I, , Z, , and X, .
Let U=={Il,, (n ):m ,n €ENp}. By property 4), U has the finite intersection prop-
erty. Property 1) guarantees that U is a restricted ultrafilter on Ny, Property 5)

insures that U is additive and Sy, =5r. It remains only to show that U is Galvin.

Fix AcU. A==l (t) for some n ,f €Np. By property 4), there is some z €A
and some f, such that II, (f, )CAN(A~2). Since I, (t, )€U and I, (¢, )CA~2,
A-2 €U, as desired.

We will now prove that ii) implies i). Assume that there is an additive
restricted Galvin ultrafilter U on Np such that Sp==S8g, . By Theorem 7.22, if
suffices to show that I' models the extended version of Hindman’s theorem stated in

Theorem 7.5. This is done by a modification of the proof of Lemma 7.17.

Let f;:N—l be a countable sequence in Sp of partitions of Np. Since
RHUN:«NF:_“S‘I’P,umSF’ the sequence is coded in JJgNp. By Porism 5.17, we may
expand [JyNp to a model of L, with a new function symbol for the sequence
<f;>. (From now on, we will introduce such new symbols routinely.} Let [id]
denote the element of J[yNp containing the identity function. Define the sequence

<y; > (which is coded in [TyNy) by
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v =pz <[id (V5 i (F ; (FS(<ye > <p < UL, [ [1))=1 ; ([d ])-
Clearly, <y; >NNp€Sy,,,. We need to show that <Cy; > is unbounded in Np.

U is additive, so for each j€&Np, there is a unique ¢; <{l; such that
{a €Np:f ; (2 )==¢; }EU, and, equivalently, TTuNpE=f 5 (lid )==c; . Let <y >;<p
be a (possibly empty) initial segment of <y; >NNp. By the definition of y;, we

have
TTuNrEY s <k (f; (FS(<yp > j <n <k U{[id [}))=¢; ).
By Theorem 5.12 part iii), we may define X&8y such that
X={z >y, 5, TV <k (f ; (FS(<yn > <n <x U{z }))=¢;)}€U.

Since [TyNrf=f i ([id ))=c;, we can define YESp such that Y={2 €X:f (2 )=0; }.

U is a Galvin ultrafilter, so we can find an element y; €Y and a set ZEU such that
Z=={z ~y; & >y \z €Y}EU.

Since y; €X, ['FV7 <k (f; (FS(<yn >j<n<h }))==¢;). Furthermore, » €Z implies

z€X and z +y;, €X, so for all z €Z,
TE=N7 <k (f ; (FS(<¥p >j<n<s Uz V)=F ; (FS(<yp > <n <k ULz 05 }))==¢; )2

Thus [JoNr = Vi<k (J;(FS(<y, >;j<n<i u{lid 1}))==¢;). Finally, y; €Y, so

Th=f 4 (yp J==¢; . Also, for all z €Z,

TEfi(e+y )= k(2 )=c

7.cU, so by Theorem 5.12 part ii),
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TNt & (lid D)= ([id [y )= 1 & (4 )=c1 -

Summarizing, we have

TTuNpEY 7 <k (7 (FS(<yy > j <5 < ULl [}))=¢; ).
This‘suf‘fices to show that < y; > is unbounded in Np. We will write <{y; >;en,. for
<y; >NNp.
The proof is almost finished. Note that <(y; >;en €Sy, and Sy, ,~Sr, s0

<y; > enyESr. Furthermore, for every J 2k €eNp,

TToNpFf ¢ (FS(<y; > <i<i == ),

so by Theorem 5.12 part i1},

TEYE =, Vil (FS(<y;i >p <i <j))=¢k )

Thus I’ models the extended version of Hindman’s theorem, and the proof of the

theorem is complete. [}

In the previous section, we set out to use model theoretic methods to determine
the proof theoretic strength of HT. The most natural model theoretic proof that
ACA, proves HT is as follows. Given an arbitrary countable model I' of ACA,,
construct an additive restricted Galvin ultrafilter U on Ny such that Sy ~Sr. For
any fnite partition f of Np, the pegged Folkman sequence of [id] yields an
unbounded sequence in Sp which is monochromatic for f in the sense of HT. Thus,

" models HT, provided we can find U.

This argument is most appealing when I' is an w-model. Since the ultrafilter U

is constructed externally, we are not confined to the formal system ACA, during the
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proof. Any information concerning the existence and nature of ultrafilters on w may

be used in constructing U.

Unfortunately, Theorem 7.25 casts serious doubt on the existence of ultrafilters
like U (for arbitrary countable models of ACA,). Theorem 7.25 shows that if the
model theoretic proof could be carried out, both HT and MT would be provable in
ACA, This is strong empirical evidence against the feasibility of such a model

theoretic proof.

On the positive side, Theorem 7.25 is intrinsically interesting. First, it equates
a statement about models of combinatorics with a statement about combinatorics of
models. Secondly, it contrasts nicely with the equivalence proved by Hindman.
Overall, Theorem 7.25 illuminates some of the subtle twists so common in the study

of combinatorics within models of subsystems of Zy.
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