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Abstract. We study the effective and proof-theoretic content of the polarized

Ramsey’s theorem, a variant of Ramsey’s theorem obtained by relaxing the

definition of homogeneous set. Our investigation yields a new characterization
of Ramsey’s theorem in all exponents, and produces several combinatorial

principles which, modulo bounding for Σ0
2 formulas, lie (possibly not strictly)

between Ramsey’s theorem for pairs and the stable Ramsey’s theorem for pairs.

1. Introduction

In this article, we will investigate several variants of Ramsey’s theorem from
the point of view of computability theory and reverse mathematics. The standard
version of Ramsey’s theorem, stated following Definition 1.1 below, has been the
subject of many such investigations; the interested reader may wish to consult
Mileti [12, Sections 1 and 2] for a partial survey of previous work. For background
material in computability theory and reverse mathematics, see, respectively, Soare
[15] and Simpson [14].

To begin, we recall some standard terminology.

Definition 1.1. Fix an infinite set X and n, k ≥ 1.
(1) [X]n denotes the set {Y ⊂ X : |Y | = n}.
(2) A k-coloring on X of exponent n is a function f : [X]n → k, where k is

identified with the set {0, . . . , k− 1} of its predecessors in ω. When X = ω
and n = 2, we refer to f as a coloring of pairs.

(3) A set H ⊆ X is homogeneous for f if H is infinite and f � [H]n is constant.
(4) For n = 2, f is stable if lims f({x, s}) exists for every x ∈ X.

Ramsey’s theorem (RT). For every n, k ≥ 1, every f : [ω]n → k has a homoge-
neous set.

The statement of Ramsey’s theorem can be easily formalized in the language of
second order arithmetic. The next definition lists several well-known related prin-
ciples.

Definition 1.2. Fix n, k ≥ 1. The following definitions are made in second order
arithmetic.

(1) RTn
k is the statement that every f : [N]n → k has a homogeneous set.

(2) SRT2
k is the statement that every stable f : [N]2 → k has a homogeneous

set.
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(3) RTn is the statement that for all j ∈ N, RTn
j .

(4) SRT2 is the statement that for all j ∈ N, SRT2
j .

Call a tuple 〈x1, . . . , xn〉 ∈ ωn (by which we always we mean one with xi 6=
xj whenever i 6= j) increasing if x1 < · · · < xn. When dealing with a coloring
f : [ω]n → k, It is convenient to write f(x1, . . . , xn) in place of f({x1, . . . , xn})
whenever 〈x1, . . . , xn〉 is an increasing tuple. Indeed, one could easily regard f as
being defined on increasing tuples only, as doing so would not affect which sets are
homogeneous for it. Our investigation, however, will turn out to be more sensitive
to this distinction as a consequence of involving the following two variations on the
notion of homogeneous set.

Definition 1.3. Fix n, k ≥ 1 and f : [ω]n → k.
(1) A p-homogeneous set for f is a sequence 〈H1, . . . ,Hn〉 of infinite sets such

that for some c < 2, called the color of this sequence, f({x1, . . . , xn}) = c
for every tuple 〈x1, . . . , xn〉 ∈ H1 × · · · ×Hn.

(2) If (1) holds just for increasing tuples, we call 〈H1, . . . ,Hn〉 an increasing
p-homogeneous set.

We will study the logical strength of the following “polarized” versions of Ramsey’s
theorem. The name comes from a similar combinatorial principle first studied by
Erdős and Rado in [3].

Polarized theorem (PT). For every n, k ≥ 1, every f : [ω]n → k has a p-
homogeneous set.

Increasing polarized theorem (IPT). For every n, k ≥ 1, every f : [ω]n → k
has an increasing p-homogeneous set.

Remark 1.4. Every homogeneous set computes a p-homogeneous one. For if f :
[ω]n → k is a coloring and H is homogeneous for f , then clearly 〈H1, . . . ,Hn〉,
where H1 = · · · = Hn = H, is p-homogeneous for f .

One encounters a striking dissimilarity between Ramsey’s theorem for pairs and
the polarized theorem for pairs by considering the following example. Define f :
[ω]2 → 2 by letting f({x, y}) equal 0 if x and y have like parity, and 1 otherwise.
Let H1 consist of the even numbers, H2 of the odds, and notice that 〈H1, H2〉 is
p-homogeneous for f with color 1. Yet f obviously admits no homogeneous set
with this color.

Analyzing the computational complexity of p-homogeneous sets and increasing
p-homogeneous sets will be the focus of Section 2 below. We will show there that
the major complexity bounds established by Jockusch [9] for homogeneous sets of
computable colorings hold also for p-homogeneous and increasing p-homogeneous
sets.

By analogy with Definition 1.2 we define the following weaker forms of PT and
IPT, whose proof-theoretic strength we will study in Sections 3 and 4.

Definition 1.5. Fix n, k ≥ 1. The following definitions are made in second order
arithmetic.

(1) PTn
k is the statement that every f : [N]n → k has a p-homogeneous set.

(2) IPTn
k is the statement that every f : [N]n → k has an increasing p-

homogeneous set.
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(3) SPT2
k is the statement that every stable f : [N]2 → k has a p-homogeneous

set.
(4) SIPT2

k is the statement that every stable f : [N]2 → k has an increasing
p-homogeneous set.

(5) PTn is the statement that for all j ∈ N, PTn
j .

(6) IPTn is the statement that for all j ∈ N, IPTn
j .

(7) SPT2 is the statement that for all j ∈ N, SPT2
j .

(8) SIPT2 is the statement that for all j ∈ N, SIPT2
j .

Note that we could easily define what it means for a tuple to be decreasing rather
than increasing, and call a tuple monotone if it is either increasing or decreasing. A
monotone p-homogeneous set for f : [ω]n → k could then be defined in the obvious
way. But since every 2-tuple is monotone, it follows that for all k ∈ ω, PT2

k coincides
with the statement that every f : [N]2 → k has a monotone p-homogeneous set.
We will see in Theorem 4.1 that, modulo provability in RCA0, the same is true in
higher exponents, so we omit the latter statement from the preceding definition.

Our results about the above principles occupy Sections 3 and 4 below. Chief
among these is that PTn

k is equivalent to RTn
k over RCA0 for all n and k, which,

at least for n = 2, may be surprising given the example following Remark 1.4. In
Section 5, we conclude with some questions and problems.

2. Computability Theory

It is clear from Remark 1.4 that many theorems about the complexity of homo-
geneous sets carry over trivially to p-homogeneous sets. We list some of these.

Theorem 2.1. Fix n, k ≥ 2.
(1) Every computable f : [ω]n → k has a Π0

n p-homogeneous set.
(2) Every computable f : [ω]n → k has a p-homogeneous set whose jump is

computable in 0(n).
(3) Every computable stable f : [ω]2 → k has a ∆0

2 p-homogeneous set.
(4) For any sequence of noncomputable sets, every computable f : [ω]2 → k

admits a p-homogeneous set not computing any member of this sequence.
(5) Every computable f : [ω]2 → k admits a low2 p-homogeneous set.

Proof. This follows at once from Remark 1.4 and (1) Theorem 5.5 of Jockusch [9];
(2) Theorem 5.6 of [9]; (3) Lemma 3.10 of Cholak, Jockusch, and Slaman [1]; (4)
Seetapun’s theorem (cf. [13, Theorem 2.1]); (5) Theorem 3.1 of [1]. �

The next proposition shows that for stable colorings, the converse to Remark 1.4
holds. Thus, up to degree, homogeneous sets for stable colorings are the same as
p-homogeneous sets, which in turn are the same as increasing p-homogeneous sets.

Proposition 2.2. For every k ≥ 2 and every stable f : [ω]2 → k, every increasing
p-homogeneous set for f computes a homogeneous set.

Proof. Let f : [ω]2 → k be a stable coloring and assume that 〈H1, H2〉 is an increas-
ing p-homogeneous set for f , say with color c < k. We construct a homogeneous
set for f computably from 〈H1, H2〉 as follows. Let a0 = min(H1), and suppose
that a0 < · · · < an have been defined for some n ≥ 0. Since H2 is infinite and,
for each i ≤ n, f(ai, x) = c for every x > ai in H2, it follows by stability of f
that lims f(ai, s) = c. Hence, there exists x > an in H1 such that f(ai, x) = c
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for all i ≤ n, and we let an+1 be the least such x. By induction we get a set
{a0, a1, . . .} ⊆ H1 such that f(am, an) = c whenever m < n, and so this set is
homogeneous for f . �

It follows, for example, that there exists a computable stable coloring with no low
increasing p-homogeneous set (cf. Downey, Hirschfeldt, Lempp, and Solomon [2]).

The degrees of homogeneous and p-homogeneous sets for general colorings are
harder to compare. One point of similarity is the next theorem, which is the
analog of a well-known result, Lemma 5.9 of [9], due to Jockusch. In that lemma,
Jockusch realized that non-trivial information could be coded into homogeneous
sets by coloring 3-tuples instead of 2-tuples. Our theorem basically says that this
information is not lost by passing to increasing p-homogeneous sets. The proof
closely follows that of the original, and we include it here only to highlight a minor
necessary adjustment.

Theorem 2.3. For every n ≥ 1, there exists a computable f : [ω]n+1 → 2 every
increasing p-homogeneous set of which computes 0(n−1).

We first need a lemma.

Lemma 2.4. Fix n ≥ 1. If f : [ω]n → 2 is ∆0
2, there exists a computable g :

[ω]n+1 → 2 such that whenever 〈H1, . . . ,Hn+1〉 is an increasing p-homogeneous set
for g, 〈H1, . . . ,Hn〉 is an increasing p-homogeneous set for f .

Proof. We let g be any computable function such that f(x) = lims g(x, s) for all
increasing tuples x ∈ ωn, which exists since f is ∆0

2. Let 〈H1, . . . ,Hn+1〉 be any
increasing p-homogeneous set for g, say with color c < 2, and suppose 〈x1, . . . , xn〉
is an increasing tuple in H1 × · · · ×Hn. We have that g(x1, . . . , xn, x) = c for all
sufficiently large x ∈ Hn+1, which implies, since Hn+1 is infinite and lims g(x, s)
exists for all x, that lims g(x1, . . . , xn, s) = c. It follows that f(x1, . . . , xn) = c by
definition of g, and hence that 〈H1, . . . ,Hn〉 is an increasing p-homogeneous set for
f , as claimed. �

Proof of Theorem 2.3. Jockusch and McLaughlin [10, Theorem 4.13] proved the
existence of an increasing 0-majorreducible function of degree 0(n−1), i.e. an in-
creasing function from ω to ω Turing equivalent to 0(n−1) and computable from
every function which dominates it. Let g be such a function and let f0 : [ω]2 → 2
be the ∆0

n coloring defined by

f0(x, y) =
{

0 if y > g(x)
1 otherwise

for all numbers x < y.
Let 〈H1, H2〉 be an increasing p-homogeneous set for f0, noting that it must have

color 0 since for any x ∈ H1 there is certainly an element y ∈ H2 with y > g(x)
and hence f0(x, y) = 0. Define a sequence 〈a0, b0, a1, b1, . . .〉 inductively by letting
an be the least element of H1 greater than ai and bi for all i < n, and letting
bn be the least element of H2 greater than an. The function m(n) = bn is then
computable from 〈H1, H2〉 and, since g is increasing and f0(an, bn) = 0 and an ≥ n
for all n, we have m(n) > g(an) ≥ g(n). It follows that m dominates g and hence
that 0(n−1) ≡T g ≤T m ≤T 〈H1, H2〉.

Thus f0 can serve as the base case of a finite induction with which we com-
plete the proof. Assume that for some m ≥ 0 there exists a ∆0

n−m coloring
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fm : [ω]m+2 → 2 every increasing p-homogeneous set of which computes 0(n−1).
Applying Lemma 2.4, relativized to 0(n−m−2), to fm yields a ∆0

n−m−1 coloring
fm+1 : [ω]m+3 → 2 every increasing p-homogeneous set of which computes an in-
creasing p-homogeneous set for fm and so computes 0(n−1). By induction, f = fn−1

is the desired computable 2-coloring of [ω]n+1. �

Part (1) of Theorem 2.1 gives an upper bound on the complexity of p-homogeneous
sets with respect to the arithmetical hierarchy. A lower bound on increasing p-
homogeneous sets can be obtained by virtually the same argument as that used to
prove Theorem 5.1 of [9], thus establishing that the arithmetical bounds on homo-
geneous, p-homogeneous, and increasing p-homogeneous sets agree. For the sake of
completeness, we reproduce the proof here.

Lemma 2.5. There exists a computable f : [ω]2 → 2 with no ∆0
2 increasing p-

homogeneous set.

Proof. Let {pe : e ∈ ω} be a listing of all the primitive recursive functions in
two variables. For each e, let De consist of the least 2e + 2 elements x such that
lims pe(x, s) = 1 if there exist such elements, and let De = ∅ if there do not. For
e, s > 0, let De,s consist of the least 2e + 2 elements x < s such that pe(x, s) = 1
provided such elements exist, and let De,s = ∅ otherwise. We construct f : [ω]2 → 2
by stages as follows.

Stage s ∈ N: We define f on [0, s) × {s}. To this end, we consider substages
e ≤ s such that at each substage e < s we define f on at most two new elements.

Substage e < s: If De,s = ∅, go to substage e + 1. Otherwise, |De,s| = 2e + 2 by
definition. At each previous substage we added at most two elements of ω×{s} to
the domain of f , so dom(f) contains no more than 2e elements from [0, s) × {s}.
Thus there are elements x < y in De,s such that fs is not defined on 〈x, s〉 and
〈y, s〉, and we pick the least such elements and let fs(x, s) = 0 and fs(y, s) = 1.

Substage s: For all x < s with 〈x, s〉 not yet in dom(f), define f(x, s) = 0.

It is clear that f is a computable coloring [ω]2 → 2. Seeking a contradiction,
suppose that 〈H1, H2〉 is a ∆0

2 increasing p-homogeneous set for f . Then in par-
ticular H1(x) = lims pe(x, s) for some e. Since H1 is infinite, it follows that De is
nonempty and hence that De,s = De for all large enough s. Pick such an s to also
be large enough that De,t = De for all t ≥ s. By construction, for each t ≥ s there
exist x, y ∈ De,t = De ⊂ H1 with f(x, t) 6= f(y, t), so choosing t > s, max(De) in
H2 now contradicts increasing p-homogeneity of 〈H1, H2〉. �

Theorem 2.6. For every n ≥ 2, there exists a computable f : [ω]n → 2 with no
∆0

n increasing p-homogeneous set.

Proof. We proceed by induction on n, the base case n = 2 being Lemma 2.5. Since
that proof obviously relativizes, we may assume the present result and all its rela-
tivizations for some n ≥ 2, and prove it in relativized form for n + 1. Fixing an ar-
bitrary set X and relativizing the induction hypothesis to X ′ yields a ∆0,X

2 coloring
f : [ω]n → 2 with no ∆0,X′

n = ∆0,X
n+1 increasing p-homogeneous set. By Lemma 2.4

relative to X, there exists an X-computable coloring g : [ω]n+1 → 2 such that when-
ever 〈H1, . . . ,Hn+1〉 is increasing p-homogeneous for g, 〈H1, . . . ,Hn〉 is increasing
p-homogeneous for f . So in particular, any ∆0,X

n+1 increasing p-homogeneous set for
g would yield such a set for f , which cannot be. This completes the proof. �
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Corollary 2.7. For every n ≥ 2, there exists a computable f : [ω]n → 2 with no
Σ0

n increasing p-homogeneous set.

Proof. Fix f : [ω]n → 2 and assume 〈H1, H2〉 is a Σ0
n increasing p-homogeneous set

for it. Then H1 and H2 are both infinite and Σ0
n and so contain infinite ∆0

n subsets,
H̃1 and H̃2. The pair 〈H̃1, H̃2〉 is consequently a ∆0

n increasing p-homogeneous set
for f . So by taking f as in the statement Theorem 2.6, the corollary now follows. �

3. Reverse Mathematics of Exponent n = 2

We begin this section by summarizing the most obvious relationships between
the principles stated in Definitions 1.2 and 1.5. The proofs are immediate from
Remark 1.4 and the relevant definitions.

Proposition 3.1 (RCA0). For every n, k ≥ 2,
(1) RTn

k → PTn
k → IPTn

k .
(2) PT2

k → SPT2
k.

(3) IPT2
k → SIPT2

k.
(4) SRT2

k → SPT2
k → SIPT2

k.

To better gauge the proof-theoretic strength of our principles, we briefly review
the statements of some which have already been studied in the literature.

Definition 3.2. The following definitions are made in second order arithmetic.
(1) CAC is the statement that for every partial ordering � on N there exists an

infinite set X which, under �, is either a chain, i.e. for any x, y ∈ X either
x � y or y � x, or else an antichain, i.e. for any two x, y ∈ X, x �P y and
y �P x.

(2) ADS is the statement that for every linear order � on N there exists an
infinite set X ⊆ L which, under �, is either an ascending sequence, i.e.
x � y if and only if x ≤ y for all x, y ∈ X, or else a descending sequence,
i.e. x � y if and only if x ≥ y for all x, y ∈ X.

(3) SADS is the statement that every linear order of type ω + ω∗ has a subset
of type ω or ω∗.

(4) D2
k is the statement that for every stable f : [N]2 → k there exists an infinite

set X and c < k such that lims f(x, s) = c for all x ∈ X.
(5) D2 is the statement that for all j ≥ 1, D2

j .
(6) DNR is the statement that for every set X there exists a function f such

that for all e ∈ N, f(e) 6= ΦX
e (e).

(7) COH is the statement that for every sequence 〈Xi : i ∈ N〉 of sets, there
exists an infinite set X such that for every i ∈ N, either X ⊆∗ Xi or
X ⊆∗ Xi.

(8) BΓ, where Γ is a set of formulas in two free number variables, is the collec-
tion of all statements

∀n[(∀x < n)(∃y)ϕ(x, y)→ (∃m)(∀x < n)(∃y < m)ϕ(x, y)]

for ϕ ∈ Γ.

The principles CAC and ADS were introduced by Hirschfeldt and Shore [7, p. 178],
DNR by Giusto and Simpson [4, p. 1478], and COH, D2

k, and D2 by Cholak,
Jockusch, and Slaman [1, Statements 7.7, 7.8, and 7.9, resp.]. We will mention
established relations among these principles as we need them.
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3.1. The stable case. A relatively weak yet ubiquitous bounding principle in
investigations such as ours is BΣ0

2. It is known to be equivalent to BΠ0
1 (cf. [5,

Lemma 2.10]), and by Theorem 6.4 of Hirst [8] also to RT1. We can exploit these
equivalences to to establish a close connection between the stable versions of our
principles and the stable version of Ramsey’s theorem for pairs.

Theorem 3.3 (RCA0). For every k ≥ 2, the following are equivalent:

(1) D2
k + BΣ0

2.
(2) SRT2

k.
(3) SPT2

k + BΣ0
2.

(4) SIPT2
k + BΣ0

2.

Moreover, D2 ↔ SRT2 ↔ SPT2 ↔ SIPT2.

Proof. In Lemma 7.10 of [1], Cholak, Jockusch, and Slaman claimed that D2
2 implies

SRT2
2 and conversely, but their proof of the first implication appears to require the

use of BΣ0
2, as pointed out in Section 2.2 of [6]. Since SRT2

2 implies BΣ0
2 by [1,

Lemma 10.6], this consequently establishes the equivalence of (1) and (2) for k = 2,
and the argument can be easily generalized to arbitrary k. The equivalence of D2

with SRT2 is by Lemma 7.12 of [1], and the implications from (2) to (3) and from
(3) to (4) are immediate by Proposition 3.1(4) above.

For the implication from (4) to (1), we formalize our proof above of Proposition
2.2 above. The only thing nontrivial there was the inductive step in the construction
of the sequence 〈an : n ∈ N〉. Note that if a0 < · · · < an are defined then for every
i ≤ n there exists s ∈ N such that for all x > s, f(ai, x) = c. By BΠ0

1 there
exists t ∈ N such that for every i ≤ n, there exists s ≤ t such that for all x > s,
f(ai, x) = c. Hence, for every i ≤ n and any x > t, f(ai, x) = c, and we can let
an+1 be the least element of H1 that is greater than t. Thus the construction of
the sequence can be carried out using BΣ0

2, as desired.
To prove the “moreover” part of the theorem it now clearly suffices to show that

SIPT2 implies BΣ0
2, or equivalently RT1. To this end, let k ∈ N and g : N → k

be given and define f : [N]2 → k by f(x, y) = g(x) for all x < y in N. Since
f(x, y) = f(x, z) for all x < y < z in N, f is trivially stable. Thus we can use
SIPT2 to fix an increasing p-homogeneous set 〈H1, H2〉 for f , and H1 is clearly
homogeneous for g. �

Since BΣ0
2 holds in every ω-model of RCA0, it follows that every ω-model of

RCA0 +SIPT2
k is a model also of SRT2

k. Hence, any proof via ω-models that a given
principle does not imply SRT2

k shows also that it does not imply SIPT2
k (the same

observation applies of course also to D2
k).

Proposition 3.4. With the possible exception of D2
2, none of the principles in

Definition 3.2 imply SIPT2
2 over RCA0.

Proof. Hirschfeldt and Shore [7, Corollaries 3.11 and 3.12] exhibited an ω-model
of RCA0 + CAC in which SRT2

2 fails. On the other hand, they showed that ADS,
SADS, and COH all follow from CAC (cf. [7], Propositions 3.1, 2.7 and 4.5, resp.),
so none of these can imply SIPT2

2. As for DNR and BΣ0
2, both hold in any ω-model

of WKL0 consisting entirely of low sets, as WKL0 ` DNR by Lemma 6.18 of [4]. But
by the main result of [2], SRT2

2 does not hold in any such model. �
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It follows from Theorem 3.3 that every consequence of SRT2
k is a consequence

of SIPT2
k + BΣ0

2. Among the strongest such consequences which have been studied
are D2

k, DNR, and SADS, and we now show that BΣ0
2 is not needed to obtain these

from SIPT2
k. See Lemma 7.10 of [1], Theorem 2.4 of [6], and Proposition 3.3 of [7]

for proofs that SRT2
k implies, respectively, D2

k, DNR, and SADS over RCA0.

Proposition 3.5 (RCA0). For every k ≥ 2, SIPT2
k → D2

k → DNR.

Proof. Let a stable f : [N]2 → k be given, and by SIPT2
k choose an increasing

p-homogeneous set 〈H1, H2〉 for f , say with color c < k. Fix x ∈ H1. Since
f(x, y) = c for every y ∈ H2, and since H2 is infinite and lims f(x, s) exists, it
must be that lims f(x, s) = c. This establishes the first implication. The second
follows by Theorem 2.4 of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman
[6] that SRT2

2 → DNR, as their proof, on closer inspection, actually shows that
D2

2 → DNR. �

Proposition 3.6 (RCA0). For every k ≥ 2, SIPT2
k → SADS.

Proof. Let � be a linear ordering on N of type ω + ω∗ and define f : [N]2 → 2 by

f(x, y) =
{

0 if x � y
1 otherwise .

for all elements x < y of N. Fix any x ∈ N, noticing that x either has finitely many
predecessors under �, or else finitely many successors. In the former case, x � y for
cofinitely many y ∈ N and so lims f(x, s) = 0, and in the latter case, symmetrically,
lims f(x, s) = 1. Thus f is stable, and we can apply SIPT2

k to obtain an increasing
p-homogeneous set 〈H1, H2〉. For every x ∈ H1 we clearly have lims f(x, s) = c
where c is the color of 〈H1, H2〉. In other words, either every x ∈ H1 has finitely
many predecessors under �, in which case (H1,�) is of type ω, or every x ∈ H2

has finitely many successors, and then (H1,�) is of type ω∗. �

3.2. The general case. The following theorem is an immediate consequence of
Theorem 3.3.

Proposition 3.7 (RCA0). For every k ≥ 2, IPT2
k+BΣ0

2 → SRT2
k and IPT2 → SRT2.

We do not know if it is possible to strengthen or sharpen the above result, such
as by showing that IPT2

k does or does not imply BΣ0
2. But we can do considerably

better in the case of PT2
k. This suggests that the difference between parts (1) and

(2) of Definition 1.3 is more significant than it may have seemed.

Theorem 3.8. For every k ≥ 2, RCA0 ` RT2
k ↔ PT2

k, and RCA0 ` RT2 ↔ PT2.

Proof. Fix k ≥ 2. That RT2
k implies PT2

k over RCA0 is by (1) of Proposition 3.1
above, so we need only establish the converse. Cholak, Jockusch, and Slaman
[1, Lemmas 7.11 and 7.13] showed that over RCA0, RT2

2 ↔ SRT2
2 + COH and

RT2 ↔ SRT2 + COH (cf. Section A.1 of Mileti [11] for a correction to the proof of
the former), and the first result easily generalizes to k colors. In view of Proposition
3.7 above it thus suffices to show that PT2

k implies BΣ0
2 and COH over RCA0. Both

of these principles follow from ADS by Propositions 2.10 and 4.5 of Hirschfeldt and
Shore [7], so it is enough to show that RCA0 ` PT2

k → ADS.
Arguing in RCA0, let � be a linear ordering on N, and define f : [N]2 → 2 as in

the proof of Proposition 3.6. Let 〈H1, H2〉 be a p-homogeneous set for f obtained



THE POLARIZED RAMSEY’S THEOREM 9

by applying PT2
k. Set a0 = min(H1) and for n ≥ 0, let an+1 to be the least element

> an of H2 if n is even and of H1 if n is odd. By ∆0
1 comprehension we obtain

an increasing sequence 〈an : n ∈ N〉 such that a2n ∈ H1 and a2n+1 ∈ H2 for all
n. Since for all n, f(an, an+1) = c where c is the color of 〈H1, H2〉, it follows that
either an � an+1 for all n or an+1 � an for all n. The range of 〈an : n ∈ N〉 is
therefore an ascending or descending sequence under �. �

The results of this section are summarized in the following diagram (arrows
denote implications provable in RCA0, double arrows denote implications which are
known to be strict, and negated arrows indicate nonimplications). For the sake of
clarity, we include only the most relevant relations from previous investigations; cf.
[7, p. 199] for a complete summary of these. Let k be any number ≥ 2.

RT2 oo // PT2

wwooooooooooooo

"*LLLLLLLLLL

LLLLLLLLLL

IPT2

wwnnnnnnnnnnnnn

''OOOOOOOOOOOO RT2
k

oo // PT2
k

yyrrrrrrrrrr

��

SRT2 oo // SPT2

#+PPPPPPPPPPP

PPPPPPPPPPP
oo // SIPT2 IPT2

k + BΣ0
2

wwooooooooooo

��

SRT2
k

oo // SIPT2
k + BΣ0

2
oo // SPT2

k + BΣ0
2

s{ nnnnnnnnnnnn

nnnnnnnnnnnn

��

CAC

��

BΣ0
2

�

((

IPT2
k

��

SPT2
k

''OOOOOOOOOOOO ADS

��

SIPT2
k

�� !)LLLLLLLLLL

LLLLLLLLLL

D2
k

��

SADS

}� ����������������

����������������

CAC
� // DNR

��
RCA0

All the implications have been explained or attributed above. That SADS is not
provable in RCA0 and does not imply ADS is by Corollaries 2.6 and 2.16 of [7], while
that CAC does not imply DNR is [7, Corollary 3.11]. That SRT2 is strictly stronger
than SRT2

k and RT2 than RT2
k follows for k = 2 by a remark following Corollary 11.5

of [1], but of course SRT2
k is equivalent to SRT2

2 and RT2
k to RT2

2 for any standard
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k. And to see that DNR is not provable in RCA0 (or even in RCA0 + BΣ0
2) observe

that no diagonally noncomputable function can be computable, so RCA0 + ¬DNR
must hold in the Turing ideal of the computable sets.

4. Reverse Mathematics of Exponent n ≥ 3

In this section, we show that in higher exponents the polarized and increasing
polarized theorems are provably equivalent to Ramsey’s theorem. Drawing on re-
sults of Jockusch [9], Simpson (cf. [14, Theorem III.7.6]) was able to show that
for n ≥ 3, RTn is equivalent over RCA0 to ACA0. We can similarly draw on The-
orem 2.3 above to obtain the following result. Here we recall that a monotone
p-homogeneous set, as discussed at the end of Section 1, is defined as in Definition
1.3, but restricting to only monotone tuples.

Theorem 4.1. For every n ≥ 3 and k ≥ 2, the following are equivalent over RCA0:

(1) ACA0.
(2) PTn.
(3) PTn

k .
(4) For all j ∈ N, every f : [N]n → j has a monotone p-homogeneous set.
(5) Every f : [N]n → k has a monotone p-homogeneous set.
(6) IPTn.
(7) IPTn

k .

Proof. We fix n ≥ 3, k ≥ 2, and argue in RCA0. That (1) implies (2) follows from
Remark 1.4 and the fact, mentioned above, that ACA0 ` RTn.

The implications from (2) to (3) to (5) to (7) and from (2) to (4) to (6) to (7)
are trivial.

It remains to show that (7) implies (1). To this end, first notice that IPTn
k implies

IPT3
2. Indeed, given f : [N]3 → 2, define g : [N]n → 2 by g(x1, x2, x3, . . . , xn) =

f(x1, x2, x3), let 〈H1, . . . ,Hn〉 be any p-homogeneous set for g given by IPTn
k , and

notice that 〈H1, H2, H3〉 is necessarily p-homogeneous for f . Thus to complete the
proof it suffices to show that IPT3

2 implies arithmetical comprehension, or equiv-
alently, that IPT3

2 implies the existence of the range of a given injective function
F : N→ N. Define f : [N]3 → 2 by

f(x1, x2, x3) =
{

1 if ¬∃t ∈ [x2, x3](F (t) ≤ x1)
0 otherwise ,

and let 〈H1, H2, H3〉 be p-homogeneous for f . Notice that the color of 〈H1, H2, H3〉
must be 1, since otherwise we could pick x1 + 2 disjoint increasing pairs from
H2 × H3, two of which must contain elements mapping to the same value below
x1, and so witnessing that F is not injective.. Now if y ∈ N is given, choose any
increasing sequence 〈x1, x2, x3〉 ∈ H1 ×H2 ×H3 with y < x1. Then y ∈ ran(F ) if
and only if there is a t < x2 with F (t) = y, since if y = F (t) for some t ≥ x2 we
can choose x4 > t in H3 to witness that f(x1, x2, x4) = 0, a contradiction. �

The preceding theorem and Theorem 3.8 now immediately yield the following
new characterization of Ramsey’s theorem in a given exponent.

Corollary 4.2. For every n, k ≥ 1, RCA0 ` RTn
k ↔ PTn

k .
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For the usual version of Ramsey’s theorem, every infinite subset of a homoge-
neous set is also homogeneous. Furthermore, the ordering of the infinite homoge-
neous subset is not mentioned in the statement, so it is easy to see that repeated
applications of Ramsey’s theorem can yield sets that are simultaneously homoge-
neous for a number of colorings. With a little effort, a similar result can be proved
in the increasing polarized case. This is formulated in the next lemma and applied
in the subsequent result.

Lemma 4.3 (RCA0). Fix n, k ∈ N and let 〈S1, . . . , Sn〉 be a sequence of infinite sets.
Then IPTn

k implies that for any f : [N]n → k there is an increasing p-homogeneous
set 〈H1, . . . ,Hn〉 for f such that Hi ⊆ Si for all i.

Proof. Working in RCA0, assume IPTn
k and fix 〈S1, . . . , Sn〉 as above. We define

infinite subsets of each Si as follows. Let sn,0 be the minimum element of Sn.
Having defined si+1,j for some i with 1 ≤ i < n, let si,j be the least element
of Si greater than si+1,j . Finally, for j ≥ 0, let sn,j+1 be the least element of
Sn greater than s1,j . Then for all i, 1 ≤ i ≤ n, the sequence 〈si,j〉j∈N exists by
primitive recursion and is an infinite increasing subsequence of Si. Furthermore,
if 〈s1,j1 , . . . , sn,jn

〉 ∈ S1 × · · · × Sn is an increasing tuple, then so is 〈j1, . . . , jn〉 ∈
N× · · · × N.

Now fix f : [ω]n → k, and define the coloring g : [ω]n → k by g(j1, . . . , jn) =
f(s1,j1 , . . . , sn,jn). Apply IPTn

k to g to obtain a fixed color c and a c-colored increas-
ing p-homogeneous set 〈G1, . . . , Gn〉. Define 〈H1, . . . ,Hn〉 by setting Hi = {si,j :
j ∈ Gi}. Then for each i such that 1 ≤ i ≤ n, Hi is an infinite subset of Si.

We claim that 〈H1, . . . ,Hn〉 is a c-colored increasing p-homogeneous set for f .
Choose any increasing tuple in H1×· · ·×Hn. By definition of the Hi, we can write
this tuple as 〈s1,j1 , . . . , sn,jn

〉 where for each i we have ji ∈ Gi. Hence, as remarked
above, 〈j1, . . . , jn〉 is an increasing tuple in G1 × · · · × Gn. By p-homogeneity
of 〈G1, . . . , Gn〉, g(j1, . . . , jn) = c, and so by construction f(s1,j1 , . . . , sn,jn) = c
also. �

For our last result, we turn to ACA′0, the subsystem of second order arithmetic
obtained by adding to the axioms of ACA0 the statement that for all sets X and all
n ∈ N, the nth Turing jump of X exists. (It is known that ACA′0 is strictly stronger
than ACA0 and strictly weaker than ACA+

0 , the system consisting of ACA0 together
with the assertion of the existence for every set X of its ωth Turing jump.) Since
the set universe of any ω-model of ACA0 is closed under any standard number of
jumps, it follows from Lemma 5.9 of Jockusch [9] that every ω-model of RCA0 +RT
is also a model of ACA′0. Mileti [11, Proposition 7.1.4] established the stronger
result that RCA0 ` ACA′0 ↔ RT, and we now show that this equivalence extends
to IPT. Our argument is different from that sketched by Mileti in that the reversal
from IPT to ACA′0 is obtained not by formalizing the proof of Lemma 5.9 of [9] but
by directly appealing to the definition of the jump.

Thus we begin by looking at precisely how the jump is formalized. In the lan-
guage of second order arithmetic, we define the following convenient abbreviations.
Given any set X, we write Y = X ′ precisely when

∀〈m, e〉 [〈m, e〉 ∈ Y ↔ (∃t) ΦX
e,t(m) ↓].

Here ΦX
e,t(m) ↓ is a fixed formalization of the assertion that the Turing machine with

code number e, using an oracle for X, halts on input m with the entire computation
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(including the use) bounded by t. For the nth jump, n ≥ 1, we write Y = X(n) if
there is a finite sequence 〈X0, . . . , Xn〉 such that X0 = X, Xn = Y , and for every
i < n, Xi+1 = X ′i. Thus Y = X ′ if and only if Y = X(1). For a given n ∈ N, we
say that X(n) exists provided there exists a set Y with Y = X(n). In what follows,
we will also need a notation for finite approximations to jumps. For any set X and
integer s define

X ′s = {〈m, e〉 : (∃t < s) ΦX
e,t(m) ↓},

and for integers u1, . . . , un define

X(n+1)
un,...,u1,s = (X(n)

un,...,u1
)′s.

Using this notation, we can state and prove our proposition addressing polarized
versions of Ramsey’s theorem and ACA′0.

Proposition 4.4. The following are equivalent over RCA0:

(1) ACA′0.
(2) RT.
(3) PT.
(4) IPT.

Proof. In Proposition 7.1.4 of [11], Mileti gives a proof of the implication from (1)
to (2). Remark 1.4 can be used to prove that (2) implies (3) implies (4), so only
(4) implies (1) remains to be proved. As the current literature contains very few
examples of detailed proofs involving ACA′0, we include the following somewhat
technical proof of this final implication.

Assume RCA0 and (4). Given X and n, we wish to show that X(n) exists. Define
the function f : [N]2n+1 → n+ 1 by setting f(s0, s1, . . . , sn, u1, . . . , un) equal to the
least positive i ≤ n such that

∃〈m, e〉 < sn−i [〈m, e〉 ∈ X(i)
sn,...,sn−i+1

= 〈m, e〉 ∈ X(i)
un,...,un−i+1

]

if such an i exists, and 0 otherwise. Apply IPT to f to get an increasing p-
homogeneous set 〈H0, . . . ,H2n〉 of color c. The following argument shows that
c = 0.

By way of contradiction, suppose c = i > 0. By removing elements from
H1, . . . ,H2n if necessary, we can arrange for min(H0) < min(H1) < · · · < min(H2n).
Define a coloring g by letting g(s0, s1, . . . , sn, u1, . . . , un) be the least 〈m, e〉 <

min(Hn−i) with 〈m, e〉 ∈ X
(i)
sn,...,sn−i+1 = 〈m, e〉 ∈ X

(i)
un,...,un−i+1 if such exists, and

min(Hn−i) otherwise. Applying Lemma 4.3 to g, we can find a p-homogeneous set
for g contained in H0, . . . ,H2n, and clearly its color must be less than min(Hn−i).
Consequently, without loss of generality, we may assume that there is a fixed
〈m0, e0〉 < min(Hn−i) such that for all increasing tuples 〈s0, . . . , sn, u1, . . . , un〉
in H0 × · · · ×H2n,

(4.4.1) 〈m0, e0〉 ∈ X(i)
sn,...,sn−i+1

= 〈m0, e0〉 ∈ X(i)
un,...,un−i+1

.

Fixing any such increasing tuple, notice that the minimality of i forces X
(i−1)
sn,...,sn−i+2

to agree with X
(i−1)
un,...,un−i+2 on all values less than sn−i+1. Thus, we have that

(∃t < sn−i+1)Φ
X(i−1)

sn,...,sn−i+2
e0,t (m0) ↓ implies (∃t < un−i+1)Φ

X(i−1)
un,...,un−i+2

e0,t (m0) ↓ .
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By (4.4.1) and the definition of approximations to the jump, the converse of this
implication must fail, so it must be that

(∃t < un−i+1)Φ
X(i−1)

un,...,un−i+2
e0,t (m0) ↓ .

Now choose an increasing tuple 〈s∗0, . . . , s∗n, u∗1, . . . , u
∗
n〉 in H0 × · · · × H2n with

s∗n−i+1 > un−i+1 and u∗n−i+2 ≥ un−i+2. Since the argument just given applies to
any increasing tuple, and in particular to

〈s0, . . . , sn, u1, . . . , un−i+1, u
∗
n−i+2, . . . , u

∗
n〉,

we have

(4.4.2) (∃t < un−i+1)Φ
X

(i−1)
u∗n,...,u∗

n−i+2
e0,t (m0) ↓ .

But X
(i−1)
s∗n...s∗n−i+2

and X
(i−1)
u∗n...u∗n−i+2

must agree on all elements below s∗n−i+1 and hence
below un−i+1. And since un−i+1 bounds the use of the computation in (4.4.2) and
un−i+1 < s∗n+i−1, we have

(∃t < s∗n−i+1)Φ
X

(i−1)
s∗n,...,s∗

n−i+2
e0,t (m0) ↓ ∧ (∃t < u∗n−i+1)Φ

X
(i−1)
u∗n,...,u∗

n−i+2
e0,t (m0) ↓,

which contradicts (4.4.1). This completes the proof of our claim that c = 0.
Next, we use 〈H0, . . . ,H2n〉 to define a new finite sequence of sets 〈X0, . . . , Xn〉.

Let X0 = X and for each i with 1 ≤ i ≤ n, let 〈m, e〉 ∈ Xi if and only if 〈m, e〉 ∈
X

(i)
sn,...,sn−i+1 , where 〈s0, . . . sn, u1 . . . un〉 is the lexicographically least increasing

tuple in H0 × · · · × H2n such that 〈m, e〉 < sn−i. Note that the Xi are defined
simultaneously rather than inductively, so by recursive comprehension the entire
sequence 〈X0, . . . , Xn〉 exists.

We claim that for each i < n, Xi+1 = X ′i. Fixing i, we prove containment in
both directions. This will obviously complete the proof, since then 〈X0, . . . , Xn〉
will be a sequence witnessing that Xn = X(n) and hence that X(n) exists.

First, suppose 〈m, e〉 ∈ Xi+1, and let 〈s0, . . . sn, u1 . . . un〉 be the lexicographi-
cally least increasing tuple with 〈m, e〉 < sn−i−1, so we have 〈m, e〉 ∈ X

(i+1)
sn,...,sn−i .

Applying the definition of approximations of jumps, 〈m, e〉 ∈ (X(i)
sn,...,sn−i+1)′sn−i

,
and so

(∃t < sn−i)Φ
X(i)

sn,...,sn−i+1
e,t (m) ↓ .

Since sn−i bounds the use of this computation, homogeneity of 〈H0, . . . ,H2n〉 im-
plies that X

(i)
sn,...,sn−i+1 agrees with Xi below this use. It consequently follows that

(∃t < sn−i)ΦXi
e,t(m) ↓, so 〈m, e〉 ∈ X ′i, as wanted.

Now suppose 〈m, e〉 ∈ X ′i. By definition of the jump, we can find a t such
that ΦXi

e,t(m) ↓. Let 〈s0, . . . , sn, u1, . . . , un〉 be the lexicographically least increasing
tuple in H0 × · · · × H2n such that 〈m, e〉 < sn−i−1, and choose vn−i ∈ Hn−i

such that vn−i > max{t, sn−i−1}. Choose an increasing tuple 〈vn−i+1, . . . , vn〉 in
Hn−i+1 × · · · ×Hn with vn−i < vn−i+1. By homogeneity of 〈H0, . . . ,H2n〉 and the
definition of Xi, the sets Xi and X

(i)
vn,...,vn−i+1 agree on elements below vn−i. Thus

(∃w < vn−i)Φ
X(i)

vn,...,vn−i+1
e,w (m) ↓,
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or more succinctly, 〈m, e〉 ∈ (X(i)
vn,...,vn−i+1)′vn−i

= X
(i+1)
vn,...,vn−i . Homogeneity of

〈H0, . . . ,H2n〉 now implies that 〈m, e〉 ∈ X
(i+1)
sn,...,sn−i and hence that 〈m, e〉 ∈ Xi+1,

which is what was to be shown. �

5. Questions

The main questions pertaining to Section 3 are about which of the implications
established there can be reversed. Of particular note are the following, stated here
for simplicity for two colors.

Question 5.1. Does IPT2
2 + BΣ0

2 imply RT2
2 over RCA0? Does IPT2

2 imply BΣ0
2?

Of course, the equivalence of IPT2
2 +BΣ0

2 with RT2
2 would follow from an affirmative

answer to the long-standing open question of whether SRT2
2 implies RT2

2 (cf. [1,
Question 13.6]). Separating RT2

2 and IPT2
2 + BΣ0

2, therefore, is likely to be at least
as hard as obtaining a negative answer to that question.

Question 5.2. Does SIPT2
2 or SPT2

2 imply SRT2
2? Equivalently (by Theorem 3.3),

does either imply BΣ0
2?

A related question is whether SIPT2
2 implies the stable version SCAC of CAC,

studied by Hirschfeldt and Shore in [7, Section 3] (c.f. [7, Definition 3.2] for the
statement of this principle). It is known that SCAC implies SADS and BΣ0

2 (cf. [7,
Propositions 3.3 and 4.1, resp.]), so an affirmative answer to this question would
similarly settle the preceding one, and would extend Proposition 3.6 above.

On the computability-theoretic side of our investigation, we do not have a precise
characterization of the relationship between the Turing degrees of homogeneous, p-
homogeneous, and increasing p-homogeneous sets. A strong connection could be
inferred from an affirmative answer to the following question.

Question 5.3. Given a computable coloring f : [ω]2 → 2, does there exists a
computable coloring g : [ω]2 → 2 such that every p-homogeneous (respectively,
increasing p-homogeneous) set for g computes a homogeneous (respectively, p-
homogeneous) set for f?

For an alternative approach, recall the following definition due to Mileti.

Definition 5.4 (Mileti, [11, Definition 5.12]). A degree d is Ramsey, respectively
s-Ramsey, if every computable coloring f : [ω]2 → k, respectively every stable such
coloring, has a homogeneous set of degree at most d.

By analogy, we can define a degree d to be p-Ramsey, respectively ip-Ramsey, if
every computable coloring of pairs has a p-homogeneous, respectively increasing
p-homogeneous, set of degree at most d. That every Ramsey degree is p-Ramsey
is immediate by Remark 1.4, and every p-Ramsey degree is obviously ip-Ramsey.

Question 5.5. Is every ip-Ramsey degree a p-Ramsey degree? Is every p-Ramsey
degree a Ramsey degree?

(Notice that while we could also formulate the polarized and increasing polarized
analogs of s-Ramsey degrees, these would all coincide by Proposition 2.2.)
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