Ada and Alan's Theoretical Machines

Jeff Hirst Appalachian State University Boone, NC

March 10, 2014

Marshall University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivating questions

Ada Lovelace is often called "the first computer programmer."

Alan Turing is often called "the father of theoretical computer science."

In each case, the argument for the title is largely based on a single paper.

What is in these papers?

Are the titles reasonable?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Ada Lovelace

Augusta Ada King, Countess of Lovelace (1815-1852)

Daughter of Lord Byron and Anne Isabella Byron

Received tutoring in mathematics

Met Charles Babbage in 1833

Translated Luigi Menebrea's *Sketch of the Analytical Engine Invented by Charles Babbage* and appended notes. (1842-1843).

Portrait of Ada Lovelace by Margaret Sarah Carpenter

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$ $3 \cdot 3 = 9 \dots$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

1 1 0 0 1 0

3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$ $3 \cdot 3 = 9...$
 2 2 2 2
 3 5
 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$ $3 \cdot 3 = 9 \dots$
 2 2 2 2 2
 3 5 7 9
 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$ $3 \cdot 3 = 9 \dots$
 2 2 2 2 2
 3 5 7 9
 1 4

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Goal: Generate accurate tables of mathematical values using Newton's finite difference method.

Example: Generate a sequence of squares, using addition.

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$ $3 \cdot 3 = 9..$
 2 2 2 2
 3 5 7 9
 1 4 9 16

▲□▶▲□▶▲□▶▲□▶ □ のへで

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

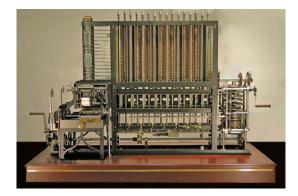
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.

$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Goal: Write a program to evaluate p(.1), p(.2), ... where $p(x) = x^2 + x + 1$.


$$p(1) = 1.11$$
 $p(2) = 1.24$ $p(3) = 1.39$ $p(4) = 1.56$

.02 .02 .02 .13 .15 .17 .19 1.11 1.24 1.39 1.56

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Difference Engine: The machine

This 11 foot long model of the Babbage's Difference Engine (second design) was completed in London in 2002. An identical engine was completed in 2008 and is on display in the Computer History Museum in Mountain View, California.

Babbage's Analytical Engine

Design features:

Storage cylinders for numbers

Mills for operating on pairs of numbers $(+, -, \times, \div)$

Instructions move numbers to a mill and store the output

Sequences of instructions given on cards (Jacquard loom)

Babbage's Analytical Engine: Ada's note D

This program computes a solution to the system of equations:

mx + ny = d m'x + n'y = d'

Table accompanying Translator's Note D of Sketch of the Analytical Engine

		Variables for Data							Working Variables						Variables f	for Results		
SU	1.	V ₀	$^{1}V_{1}$	$^{1}V_{2}$	$^{1}\mathrm{V}_{3}$	$^{1}V_{4}$	$^{1}V_{5}$	$^{0}V_{6}$	$^{0}V_{7}$	$^{0}V_{8}$	$^{0}V_{9}$	$^{0}V_{10}$	$^{0}V_{11}$	$^{0}V_{12}$	$^{0}V_{13}$	$^{0}V_{14}$	$^{0}V_{15}$	⁰ V ₁₆
Number of Operations	IOFIPI	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	×10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mber	n a li	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NU	1Nd	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	m	n	d	m'	n'	đ										$\frac{dn'-d'n}{mn'-m'n} = x$	$\frac{\underline{d'm} - \underline{dm}}{\underline{mn'} - \underline{m'n}} = y$
5 : 6 : 7 - 8 - 9 - 10 -	×	m 0		<i>d</i> 0	m'		ď 0	mm'	0	dn' 0	0	0	 	(mn' - m'n)	(dn' - d'n)	(d'm – dm')	$\frac{dn'-d'n}{mn'-m'n} = x$	
11 -	÷	• • •						••••			••••			0	•••••	0		$\frac{d'm-dm'}{mn'-m'n} = y$

・ロト・日本・日本・日本・日本・日本

Babbage's Analytical Engine: Ada's note G This is a program for calculating Bernoulli numbers:

Vertaken by by b	I In a local dec.	0	0	°V24 O					
4 5 0	B in a dec. fract.			0					
Image: Variables Variables manage in the statement of Results 0		in a							
3 3 upon results Variable 0		1 2 8 4		0					
			B in dec.	0					
	B ₁	B ₃	B_5	B ₇					
	-								
$1 \times \frac{1}{2} \sqrt{2} \times \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} \sqrt{2} \sqrt{2} = \frac{1}{2} \sqrt{2} \sqrt{2} = \frac{1}{2} \sqrt{2} \sqrt{2} + \frac{1}{2} $									
$a = -v_4 - v_1 - v_4 - v_1 + v_4 - v_1 + v_1 +$									
$a = 1 - \frac{1}{2} + \frac{1}{2$									
$a + \frac{1}{2}v_5 + 2v_4 + \frac{1}{2}v_{11} + \dots + \frac{1}{2}v_{12} = \frac{1}{2}v_{12} + \frac{1}{2}v_{12} + \dots + \dots + \dots + \dots + \dots + 0 = 0 = 0 + \dots + \dots + \dots + \dots + \frac{2n-1}{n-1}$									
$s + \frac{1}{v_{11} + v_2} \frac{1}{2v_{11}} \dots \dots \frac{1}{v_{2}} \frac{1}{2v_{21}} = \frac{1}{2v_{21}} \frac{1}{2} + \frac{1}{2v_{21} + 1} \dots \dots \dots \frac{1}{2} \dots \dots \frac{1}{2v_{21}} \dots \dots \dots \dots \dots \dots \dots \dots \frac{1}{2v_{21}} \frac{1}{2v_{21} + 1} \dots \dots \frac{1}{2v_{21}} \frac{1}{2v_{21} + 1} \dots $									
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ V_{13} \end{bmatrix} = \begin{bmatrix} 0 \\ V_{$									
$\tau = -\frac{1}{2}v_{3} - \frac{1}{2}v_{1} + \frac{1}{2}v_{10} + \frac{1}{2}v_{10} = \frac{1}{2}v_{10} + \frac{1}{2}v_$									
$ s + \frac{1}{2}v_2 + o_{V_7} \frac{1}{1}v_7 \dots \int_{0}^{1} \frac{1}{2}v_2 = \frac{1}{1}v_2 \\ = \frac{1}{2}v_2 + 0 = 2 \dots \dots \dots \dots 2 \dots \dots 2 \dots \dots 2 $									
$9 + \frac{1}{2}v_0 + \frac{1}{2}v_1 + \frac{1}{2}v_1 + \frac{1}{2}v_1 = \frac{1}{2}v_1 = \frac{1}{2} = A_1 + \dots + \dots + \dots + \dots + \dots + \dots + \frac{1}{2}a_1 = 2 + \dots + \dots + \frac{1}{2}a_1 = A_1 + \dots + \frac{1}{2}a_1 + \dots + $									
$10 \qquad \times \ \ \left[v_{12} \times x^3 v_{13} + v_{12} \dots + v_{13} + v_{12} + v_{13} +$. В1								
$11 + \frac{1}{1}v_{12} + \frac{1}{1}v_{13} + \frac{1}{2}v_{13} - \frac{0}{1}v_{13} = \frac{0}{2}v_{13} = -\frac{1}{2}\frac{2n+1}{2n+1} + B_1 \cdot \frac{2n}{2n} - \frac{1}{2n+1} + B_1 \cdot \frac{2n}{2n} - \frac{1}{2n} - \frac{1}{2n} - \frac{1}{2n} - \frac{1}{2n} - \frac{1}{2n} - $	ł								
$12 \qquad -1 V_{10} - 1 V_1 - 2 V_{10} \dots \dots + 1 V_1 = - 2 V_{10} + = - 2 (-2) \dots + 1 + \dots + 1 \dots + \dots$									
$13 \int \left(- \frac{1}{2} v_0 - 1 v_3 - \frac{1}{2} v_0 - \dots + \frac{1}{2} v_0 + \frac{1}{2$									
$14 \qquad 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 +$									
$15 \left\{ \begin{array}{c} \left\{ \begin{array}{c} 2v_{0} \\ e^{2}v_{0} \\ e^{2}v_{0} \end{array} \right\} \\ \frac{2}{2}v_{0} \\ \frac{2}{2}v_{0} \\ \frac{2}{2}v_{0} \end{array} \right\} \\ \frac{2n-1}{2} \\ \frac{2n-1}{2$									
$10 \left \begin{array}{c} \left x \right ^{1} v_{0} \times ^{2} v_{11} \right ^{4} v_{11} \dots \\ \left \begin{array}{c} \left v_{0} \right _{1} \\ = \begin{array}{c} \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \end{array} \right = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \end{array} \right = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left \begin{array}{c} \left \left x \right ^{2} v_{0} \\ = \begin{array}{c} \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \end{array} \right = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \end{array} \right = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi-1}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} - \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} \\ \left x \right ^{2} v_{0} \\ = \frac{2\pi}{3} + \frac{2\pi}{3} $									
$1T = \left[1 - \frac{2}{V_0} - \frac{1}{V_0} - \frac{1}$									
$18 \left\{ \left + \right + 1_{V_1 + 2_{V_7}} \right _{2_{V_7} = -1_{V_7}} \left\{ \begin{array}{c} 2_{V_7} \\ - 2_{V_7} \\ - 1_{V_7} \end{array} \right\} = 3 + 1 = 4 \dots \dots$									
$10 \left\{ + \frac{z_{V_0} + z_V}{z_{V_0} + z_V} + \frac{z_{V_0}}{z_{V_0}} + \frac{z_{V_0}}{z_{V_0}} \right\} = \frac{2n-2}{n-1} \dots \dots$									
$20 \left[\begin{array}{c} \times & ^{1}v_{9} \times ^{4}v_{11} & ^{1}v_{12} & \dots & \cdots & \\ \begin{array}{c} v_{12} & & v_{22} \\ v_{23} & & & v_{23} \end{array} \right] = \begin{array}{c} 2p \cdot \frac{m_{13}}{m_{13}} \cdot \frac{2m_{23}}{m_{23}} = A_{3} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \end{array} \right]$									
$21 \sum_{i=1}^{n} \left[x_{1}^{i} y_{22} \times ^{i} y_{11}^{i} \right] \left[y_{12} \dots \dots \\ y_{1}^{i} y_{22} \times ^{i} y_{11}^{i} \right] = B_{3} \cdot \frac{3n-1}{2} \cdot $		В3							
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$									
$23 \qquad \left[-3 \frac{1}{2} \sqrt{3} + 3 \frac{1}{2} $									
$24 + \left[\frac{1}{2} V_{23} + {}^{0}V_{24} \right] \left[\frac{1}{2} V_{24} - \cdots + \left[\frac{1}{2} V_{23} \right] = 0_{T} - \cdots - $				BT					
$\begin{bmatrix} 1 & V_1 & 1 & V_1 & V_1 \end{bmatrix} = n + 1 = 4 + 1 = 5$									
$5_{V_{\alpha}} = 5_{V_{\alpha}}$ by a Variable-card.									
$\int 3\sqrt{\frac{1}{2}} = 9\sqrt{\frac{1}{2}}$ by a Variable-card.									

Summary: Ada Lovelace's theoretical computing

The Analytical Engine was never built.

Program control was limited. (Loops.)

Lovelace and Babbage collaborated on creating instruction sets for the Analytical Engine.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Was Ada Lovelace the first computer programmer?

Alan Turing

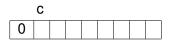
Alan M. Turing (1912-1954)

Cambridge undergraduate and fellow

PhD from Princeton

Thesis advisor: Alonzo Church

Published *On computable numbers with an application to the entscheidungsproblem* in the Proceedings of the London Mathematical Society


Excerpt from On computable numbers...

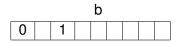
Confign	uration	Behaviour				
m-config.	symbol	operations	final m-config.			
б	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
f	None	R	6			

Excerpt from On computable numbers...

Configu	iration	Behaviour				
m-config.	symbol	operations	final m-config.			
б	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
ť	None	R	6			

Excerpt from On computable numbers...

Configu	uration	Behaviour				
m-config.	symbol	operations	final m-config.			
b	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
ť	None	R	6			


Excerpt from On computable numbers...

Config	uration	Behaviour				
m-config.	symbol	operations	final m-config.			
b	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
ť	None	R	6			


Excerpt from On computable numbers...

Config	uration	Behaviour				
m-config.	symbol	operations	final m-config.			
b	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
ť	None	R	6			

Excerpt from On computable numbers...

Configure	uration	Behaviour				
m-config.	symbol	operations	final m-config.			
б	None	P0, R	c			
c	None	R	c			
e	None	P1, R	£			
ť	None	R	6			

Another Turing machine

Another excerpt from On computable numbers...

Cor	ofiguration	Behaviour			
m-confi	g. symbol	operations	final m-config.		
б		Pə, R, Pə, R, P0, R, R, P0, L, L	o		
		R, Px, L, L, L	o		
U	0		٩		
	Any (0 or 1 None) R, R	٩		
ч	None	P1, L	p		
	(x	E, R	٩		
ņ	$\begin{cases} x \\ z \\ None \end{cases}$	R	f		
	None	L, L	p		
ć	Any	R, R	f		
Ţ	Any None	P0, L, L	ø		

This machine computes 0010110111011110...

More ideas from Turing's paper

- Every Turing machine has a "description number" that could be written on a tape.
- There is a *universal machine* that given any tape containing the description number for a machine *P* prints the output of *P*.

(ロ) (同) (三) (三) (三) (三) (○) (○)

More ideas from Turing's paper

- Every Turing machine has a "description number" that could be written on a tape.
- There is a *universal machine* that given any tape containing the description number for a machine *P* prints the output of *P*.
- There is no machine that given any tape containing the description number for a machine *P* either prints 1 and halts if *P* halts or prints 0 and halts if *P* does not halt.

The halting problem is not Turing computable.

Hilbert's entscheidungsproblem

Turing also solved Hilbert's "decision problem" by proving:

There is no machine that given any tape containing the description number for a formula of predicate calculus either prints 1 and halts if the formula is logically valid or prints 0 and halts if the formula is not logically valid.

This claim implicitly relies on the equivalence of Hilbert's notion of "algorithmically computable" and "computable by a Turing machine."

(ロ) (同) (三) (三) (三) (三) (○) (○)

Summary: Alan Turing's theoretical computing

- Turing created a formalization of computing that is still commonly used.
- Formalizations created by other logicians (e.g. Church and Kleene) are equivalent.
- Turing's universal machine foreshadowed the creation of *general purpose computers* like ENIAC (1946).

Was Alan Turing the father of theoretical computer science?

(日) (日) (日) (日) (日) (日) (日)

Some references

- [1] Margaret Sarah Carpenter, *Portrait of Ada Lovelace*. British Government Art Collection, http://en.wikipedia.org/wiki/File:Ada_Lovelace.jpg.
- [2] Ada Augusta Lovelace, Sketch of the Analytical Engine Invented by Charles Babbage. Translation of Menabrea's article with additional notes. http://www.fourmilab.ch/babbage/sketch.html.
- [3] Alan Turing Year Logo. http://www.mathcomp.leeds.ac.uk/turing2012.
- [4] Alan M. Turing, On computable numbers with an application to the entscheidungsproblem, Proc. Lond. Math. Soc. 42 (1937), 230–265.