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The first tale: Algebraic field extensions.

Defn: An algebraic extension of a countable field F is a pair
〈K ,ϕ〉 where K is a countable field, ϕ is an embedding of F
into K , and for every a ∈ K there is a nonzero f (x) ∈ F [x ] such
that ϕ(f )(a) = 0.

Theorem
(RCA0) TFAE:

1. WKL0

2. Let F be a field with algebraic closure F̄ . If α ∈ F̄ and
ϕ : F (α) → F (α) is an F-automorphism of F (α), then ϕ
extends to an F-automorphism of F̄ .



The second tale: Dichotomy on the reals.

Theorem
(RCA0) For every real α, either α 6 0 or 0 6 α.

Theorem
(RCA0) TFAE:

1. WKL0

2. If 〈αi〉i∈N is a sequence of real numbers, then there is a set
I such that for all i ,

(i ∈ I → αi 6 0)∧ (i /∈ I → 0 6 αi)



The third tale: Trees and forests.

Theorem
(RCA0) TFAE:

1. WKL0

2. seqWKL0: If 〈Ti〉i∈N is a sequence of infinite 0-1 trees, then
there is a sequence 〈Pi〉i∈N of paths through them.

3. seqWWKL0: If 〈Ti〉i∈N is a sequence of infinite 0-1 trees of
positive measure, then there is a sequence 〈Pi〉i∈N of
paths through them.
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