The strength of the polarized Ramsey's theorem

Damir D. DzhafarovUniversity of ChicagoJeffry L. Hirst*Appalachian State University

January 8, 2009

These slides are available at: www.mathsci.appstate.edu/~jlh

Ramsey's theorem and a variant

Ramsey's theorem $[\mathsf{RT}_k^n]$: If $f : [\mathbb{N}]^n \to k$, then we can find a c < k and an infinite set H such that $f(\{x_1, \ldots, x_n\}) = c$ for every $\{x_1, \ldots, x_n\} \in [H]^n$.

Polarized Ramsey's theorem $[\mathsf{PT}_k^n]$: If $f : [\mathbb{N}]^n \to k$, then we can find a c < k and infinite sets H_1, \ldots, H_n such that $f(\{x_1, \ldots, x_n\}) = c$ for all $(x_1, \ldots, x_n) \in H_1 \times \cdots \times H_n$ with distinct components.

Increasing Polarized Ramsey's thm $[\mathsf{IPT}_k^n]$: If $f : [\mathbb{N}]^n \to k$, then we can find a c < k and infinite sets H_1, \ldots, H_n such that $f(\{x_1, \ldots, x_n\}) = c$ for every $(x_1, \ldots, x_n) \in H_1 \times \cdots \times H_n$ with $x_1 < \cdots < x_n$.

PT_k^n appears to be weak

If H is homogeneous for RT_k^n then $H \times \cdots \times H$ is homogeneous for PT_k^n .

 $\mathsf{RCA}_0 \vdash \forall n \forall k (\mathsf{RT}_k^n \to \mathsf{PT}_k^n)$

Homogeneous sets for PT_k^n seem to contain less information than homogeneous sets for RT_k^n

For example, define $f : [\mathbb{N}]^2 \to 2$ by f(x, y) = 0 iff $x \equiv y \mod 2$. Every RT-homogeneous set for f must be 0 on all pairs. However, $H_1 = \{\text{evens}\}, H_2 = \{\text{odds}\}$ is a PT-homogeneous sequence with $f(x_1, x_2) = 1$ for all $(x_1, x_2) \in H_1 \times H_2$.

Initial question

Jim Schmerl asked: Is PT_k^n actually weaker than RT_k^n ? In particular, is PT provable in ACA_0 ? Shorthand: PT abbreviates $\forall n \forall k \mathsf{PT}_k^n$

Short answer: For $n \ge 3$, PT_k^n is very similar to RT_k^n . In particular, $\mathsf{ACA}_0 \not\vdash \mathsf{PT}$. Reverse mathematics of PT

Theorem: For every $n \ge 3$ and $k \ge 2$, RCA_0 proves $\mathsf{ACA}_0 \leftrightarrow \mathsf{RT}_k^n \leftrightarrow \mathsf{PT}_k^n \leftrightarrow \mathsf{IPT}_k^n$

Comments:

A proof of $ACA_0 \leftrightarrow RT_k^n$ can be found in Simpson [6]. Proving $IPT_2^3 \rightarrow ACA_0$ is similar to the reversal for RT_2^3 .

Theorem: RCA_0 proves $\mathsf{ACA}'_0 \leftrightarrow \mathsf{RT} \leftrightarrow \mathsf{PT} \leftrightarrow \mathsf{IPT}$

Comments:

 $ACA'_0 \leftrightarrow RT$ appears in J. Mileti's thesis [5]. $ACA'_0 = ACA_0 + \forall n \text{(the } n^{th} \text{ jump exists)}.$

Some computability theory

Fix $n, k \ge 2$.

Every computable $f : [\mathbb{N}]^n \to k$ has a Π^0_k definable PT-homogeneous sequence. (Immediate from Jockusch [4].)

There is a computable $f : [\mathbb{N}]^n \to k$ with no Σ_n^0 definable **PT**-homogeneous sequence.

(Adaptation of Jockusch [4].)

Shorthand: RT^2 abbreviates $\forall k \mathsf{RT}_k^2$

Theorem: $\mathsf{RCA}_0 \vdash \mathsf{RT}^2 \leftrightarrow \mathsf{PT}^2$

Proof uses results on polarized Ramsey's theorem for stable colorings, and applies theorems of Cholak, Jockusch, and Slaman [1] and Hirschfeldt and Shore [3].

Question: Does $\mathsf{RCA}_0 \vdash \mathsf{IPT}^2 \to \mathsf{PT}^2$?

Question: How does this connect with the weak Ramsey principles of François Dorais?

Stable pairs

 $f: [\mathbb{N}]^2 \to k$ is stable is $\forall m \lim_{n} f(m, n)$ exists.

SRT is RT restricted to stable colorings.

Theorem: $\mathsf{RCA}_0 \vdash \mathsf{SRT}^2 \leftrightarrow \mathsf{SPT}^2 \leftrightarrow \mathsf{SIPT}^2$

Comment: For stable colorings, it is not so hard to generate an **RT**-homogeneous set from a **IPT**-homogeneous sequence, provided we can use the pigeonhole principle.

Question: Does $\mathsf{RCA}_0 \vdash \mathsf{SIPT}^2 \to \mathsf{IPT}^2$?

Results contributed by: Cholak, Dzhafarov, Hirschfeldt, Hirst, Jockusch, Kjos-Hanssen, Lempp, Slaman, and Shore

References

- [1] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey's theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55. MR 1825173 (2002c:03094)
- [2] Damir Dzhafarov and Jeffry Hirst, *The polarized Ramsey theorem*. Archive for Math. Logic, Online First: 2008.
- [3] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey's theorem for pairs, J. Symbolic Logic 72 (2007), no. 1, 171–206. MR 2298478 (2007m:03115)
- [4] Carl G. Jockusch Jr., Ramsey's theorem and recursion theory, J. Symbolic Logic
 37 (1972), 268–280. MR 0376319 (51 #12495)
- [5] J. Mileti, Partition theory and computability theory. Ph.D. Thesis.
- [6] Stephen G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999. MR 1723993 (2001i:03126)