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From Cantor’s Contributions to the founding

of the theory of transfinite numbers [1]:

We call a simply ordered aggregate F “well-

ordered” if its elements f ascend in a definite

succession from a lowest f1 in such a way that:

I. There is in F an element f1 which is lowest

in rank.

II. If F ′ is any part of F and if F has one or many

elements of higher rank than all elements of

F ′, then there is an element f ′ of F which

follows immediately after the totality of F ′,
so that no elements in rank between f ′ and

F ′ occur in F .



Reverse Mathematics of Cantor’s definition

Thm: (RCA0) The following are equivalent:

1. ACA0

2. ([1] §12 Thm A) Let X be a linear order. If

every subset of X with a strict upper bound

has a least strict upper bound, then every

nonempty subset of X has a least element.

3. ([1] §12 Thm B) Let X be a linear order.

If every nonempty subset of X has a least

element, then every subset of X with a strict

upper bound has a least strict upper bound.

Thm: (RCA0) Let X be a linear order. Then

every nonempty subset of X has a least element

if and only if X contains no infinite descending

sequences.



Notes on reversals:

(least strict u. b. → least elt.) → ACA0

Assume ¬ACA0.

Use Friedman’s [2] well ordering β satisfying

ω ≤w β β 6≤w ω ω + 1 6≤w β
Invert β; call the resulting order B.

Claim: Every subset of B with a strict upper

bound has a least strict upper bound.

Let X be a subset of B with a strict upper

bound. X has a largest element, µ. Because

ω + 1 6≤w β, {x ∈ X | x > µ} has a least

element, µ + 1. This element is the least strict

upper bound for X .

Claim: Not every subset of B has a least ele-

ment.

ω ≤w β, so B contains an infinite descending

sequence.
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Friedman’s ordering:

Assume ¬ACA0. Let f be a function whose

range doesn’t exist.

Extra elements

inserted depending

on values of f

ω β



Notes on reversals:

(least elt. → least strict u. b.) → ACA0

Assume ¬ACA0.

Use Hirst’s [4] well ordering β satisfying

ω ≤s β β 6≤s ω ω + 1 6≤s β
Let f witness ω ≤s β.

RCA0 proves that there is a set Y ⊂ β such

that b is an upper bound for Y if and only if

b is an upper bound for the range of f . Since

ω + 1 6≤s β, Y has no least strict upper bound.

Since β is a well ordering, RCA0 proves that

every nonempty subset of β has a least element.



Hirst’s ordering:

Assume ¬ACA0. Let f be a function whose

range doesn’t exist.

Consider the notation:

f−1(y) =

{
x + 1 if f (x) = y,

0 if y /∈ Range(f ).

Let β be the Kleene-Brouwer ordering on the

tree T of approximations to f−1.



Statements about ordinal arithmetic that are

equivalent to ACA0 are relatively rare.

A survey of the reverse mathematics of or-

dinal arithmetic† lists a number of results on

ordinal arithmetic:

29 statements are provable in RCA0

7 statements are equivalent to ACA0

28 statements are equivalent to ATR0

†preprint available at

www.mathsci.appstate.edu/ ˜jlh/bib.html

to appear in Simpson’s Reverse Math 2001

http://www.math.psu.edu/simpson/revmath/



Statements of ordinal arithmetic that are equiv-

alent to ACA0.

Thm: (RCA0) The following are equivalent:

1. If α and β are well orderings with α ≤s β
and β 6≤s α, then α + 1 ≤s β.

2. If β is a well ordering such that ω ≤w β and

β 6≤w ω, then ω + 1 ≤w β. (Friedman)

3. If β is a well ordering such that ω ≤w β and

β ≤w ω, then ω ≡s β.

4. If α and β are well ordered, then so is αβ.

(Girard)

5. If α is well ordered, then so is 2α. (Girard)

6. ACA0.



Existence of suprema of sequences of

well orderings

Thm: (RCA0) The following are equivalent:

1. ATR0.

2. Suppose 〈αx | x ∈ β〉 is a well ordered

sequence of well orderings. Then

sup〈αx | x ∈ β〉 exists. That is, there is a well

ordering α unique up to order isomorphism

satisfying

• ∀x ∈ β(αx ≤ α), and

• ∀γ(γ + 1 ≤ α→ ∃x ∈ β(αx 6≤ γ)).

This result holds for both strong and weak com-

parability.



Thm: (Sierpiński’s exercise [6]) For each posi-

tive natural number n, RCA0 proves∑
α<ωn

α ≡s ω2n−1.

Informally,
∑

α<ωn α = sup〈αωn | α ∈ ωn〉

Sierpiński’s exercise was generalized by Jones,
Levitz, and Nichols [5]. Their γ-lemma is equiv-
alent to ATR0.

Thm: (RCA0) The following are equivalent:

1. ATR0.
2. (γ-lemma) Suppose that ωγ is well ordered

and f assigns a well ordered set to each α <
ωγ in such a way that if α < β < ωγ then
f (β) + 1 6≤ f (α). Then
• For all α < ωγ, f (α) · ωγ ≤

∑
α<ωγ f (α),

and
• If δ <

∑
α<ωγ f (α), then there is an α <

ωγ such that f (α) · ωγ 6≤ δ.

Informally,
∑

α<ωγ f (α) = sup〈f (α)ωγ | α ∈ ωγ〉



Copies of these slides appear at
www.mathsci.appstate.edu/˜jlh

REFERENCES

[1] Georg Cantor, Beiträge zur Begründung der
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