Reverse Mathematics of Ordinal Arithmetic

Jeffry Hirst Appalachian State University (visiting University of Notre Dame)

March 2001

Copies of these slides appear at www.mathsci.appstate.edu/˜jlh

From Cantor's *Contributions* to the founding of the theory of transfinite numbers [1]:

We call a simply ordered aggregate F "wellordered" if its elements f ascend in a definite succession from a lowest f_1 in such a way that:

- I. There is in F an element f_1 which is lowest in rank.
- II. If F' is any part of F and if F has one or many elements of higher rank than all elements of F' , then there is an element f' of F which follows immediately after the totality of F' , so that no elements in rank between f' and F' occur in F .

Reverse Mathematics of Cantor's definition

Thm: $(RCA₀)$ The following are equivalent:

- 1. $ACA₀$
- 2. ([1] $\S12$ Thm A) Let X be a linear order. If every subset of X with a strict upper bound has a least strict upper bound, then every nonempty subset of X has a least element.
- 3. (1) $\S12$ Thm B) Let X be a linear order. If every nonempty subset of X has a least element, then every subset of X with a strict upper bound has a least strict upper bound.

Thm: (RCA_0) Let X be a linear order. Then every nonempty subset of X has a least element if and only if X contains no infinite descending sequences.

Notes on reversals:

(least strict u. b. \rightarrow least elt.) \rightarrow ACA₀

Assume $\neg ACA_0$.

Use Friedman's [2] well ordering β satisfying

 $\omega \leq_w \beta$ $\beta \nleq_w \omega$ $\omega + 1 \nleq_w \beta$

Invert β ; call the resulting order B .

Claim: Every subset of B with a strict upper bound has a least strict upper bound.

Let X be a subset of B with a strict upper bound. X has a largest element, μ . Because $\omega + 1 \not\leq_{w} \beta$, $\{x \in X \mid x > \mu\}$ has a least element, $\mu + 1$. This element is the least strict upper bound for X.

Claim: Not every subset of B has a least element.

 $\omega \leq_{w} \beta$, so B contains an infinite descending sequence.

Friedman's ordering:

Assume $\neg ACA_0$. Let f be a function whose range doesn't exist.

Notes on reversals:

(least elt. \rightarrow least strict u. b.) \rightarrow ACA₀

Assume $\neg ACA_0$.

Use Hirst's [4] well ordering β satisfying

 $\omega \leq_{s} \beta$ $\beta \nleq_{s} \omega$ $\omega + 1 \nleq_{s} \beta$

Let f witness $\omega \leq_{s} \beta$.

 RCA_0 proves that there is a set $Y \subset \beta$ such that b is an upper bound for Y if and only if b is an upper bound for the range of f . Since $\omega + 1 \nleq s \beta$, Y has no least strict upper bound.

Since β is a well ordering, **RCA**₀ proves that every nonempty subset of β has a least element.

Hirst's ordering:

Assume $\neg ACA_0$. Let f be a function whose range doesn't exist.

Consider the notation:

$$
f^{-1}(y) = \begin{cases} x+1 & \text{if } f(x) = y, \\ 0 & \text{if } y \notin \text{Range}(f). \end{cases}
$$

Let β be the Kleene-Brouwer ordering on the tree T of approximations to f^{-1} .

Statements about ordinal arithmetic that are equivalent to $ACA₀$ are relatively rare.

A survey of the reverse mathematics of ordinal arithmetic[†] lists a number of results on ordinal arithmetic:

29 statements are provable in RCA₀

7 statements are equivalent to ACA_0

28 statements are equivalent to ATR_0

†preprint available at www.mathsci.appstate.edu/ ˜jlh/bib.html to appear in Simpson's Reverse Math 2001 http://www.math.psu.edu/simpson/revmath/ Statements of ordinal arithmetic that are equivalent to ACA_0 .

Thm: (RCA_0) The following are equivalent:

- 1. If α and β are well orderings with $\alpha \leq_{s} \beta$ and $\beta \nleq_{s} \alpha$, then $\alpha + 1 \leq_{s} \beta$.
- 2. If β is a well ordering such that $\omega \leq_w \beta$ and $\beta \nleq w \omega$, then $\omega + 1 \leq w \beta$. (Friedman)
- 3. If β is a well ordering such that $\omega \leq_w \beta$ and $\beta \leq_w \omega$, then $\omega \equiv_s \beta$.
- 4. If α and β are well ordered, then so is α^{β} . (Girard)
- 5. If α is well ordered, then so is 2^{α} . (Girard) $6.$ ACA $₀$.</sub>

Existence of suprema of sequences of well orderings

Thm: (RCA_0) The following are equivalent: 1. $ATR₀$.

2. Suppose $\langle \alpha_x | x \in \beta \rangle$ is a well ordered sequence of well orderings. Then $\sup\langle \alpha_x | x \in \beta \rangle$ exists. That is, there is a well ordering α unique up to order isomorphism satisfying

•
$$
\forall x \in \beta (\alpha_x \leq \alpha)
$$
, and

• $\forall \gamma(\gamma + 1 \leq \alpha \rightarrow \exists x \in \beta(\alpha_x \nleq \gamma)).$

This result holds for both strong and weak comparability.

Thm: (Sierpiński's exercise [6]) For each positive natural number n , $RCA₀$ proves

$$
\sum_{\alpha < \omega^n} \alpha \equiv_s \omega^{2n-1}.
$$

Informally, $\sum_{\alpha<\omega^n} \alpha = \sup \langle \alpha \omega^n \mid \alpha \in \omega^n \rangle$

Sierpiński's exercise was generalized by Jones, Levitz, and Nichols [5]. Their γ -lemma is equivalent to ATR_0 .

Thm: (RCA_0) The following are equivalent:

- 1. $ATR₀$.
- 2. (γ -lemma) Suppose that ω^{γ} is well ordered and f assigns a well ordered set to each α < ω^{γ} in such a way that if $\alpha < \beta < \omega^{\gamma}$ then $f(\beta)+1 \nleq f(\alpha)$. Then
	- For all $\alpha < \omega^{\gamma}$, $f(\alpha) \cdot \omega^{\gamma} \le \sum_{\alpha < \omega^{\gamma}} f(\alpha)$, and
	- If $\delta < \sum_{\alpha<\omega^{\gamma}} f(\alpha)$, then there is an α ω^{γ} such that $f(\alpha) \cdot \omega^{\gamma} \nleq \delta$.

Informally, $\sum_{\alpha<\omega^{\gamma}} f(\alpha) = \sup \langle f(\alpha)\omega^{\gamma} | \alpha \in \omega^{\gamma} \rangle$

REFERENCES

[1] GEORG CANTOR, Beiträge zur Begründung der transfiniten Mengenlehre, *Math. Ann.*, vol. 49 (1897), pp. 207–246, English translation by P. Jourdain published as *Contributions to the founding of the theory of transfinite numbers*, Dover, New York, 1955.

[2] Harvey M. Friedman and Jeffry L. Hirst, Weak comparability of well orderings and reverse mathematics, *Ann. Pure Appl. Logic*, vol. 47 (1990), pp. 11–29.

[3] JEFFRY L. HIRST, A survey of the reverse mathematics of ordinal arithmetic, to appear in Simpson's Reverse Mathematics 2001.

 $[4]$ \longrightarrow , Ordinal inequalities, transfinite induction, and reverse mathematics, *J. Symbolic Logic*, vol. 64 (1999), pp. 769–774.

[5] JAMES P. JONES, HILBERT LEVITZ, and WAR-REN D. NICHOLS, On series of ordinals and combinatorics, *Math. Logic Quart.*, vol. 43 (1997), pp. 121– 133.

[6] WACŁAW SIERPIŃSKI, *Cardinal and ordinal numbers*, Polska Akademia Nauk, Monografie Matematyczne, Państwowe Wydawnictwo Naukowe, Warszawa, 1958.