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An elementary exercise of Gauss:

n∑
k=1

k =
n(n + 1)

2



An elementary exercise of Sierpiński:

For each positive natural number n, we have∑
α<ωn

α = ω2n−1.

Sample cases:

∑
α<ω1

α = 1 + 2 + 3 + · · · = ω = ω2·1−1

∑
α<ω2

α = 0 + 1 + 2 + · · · + ω + · · · + ω · 2 + · · · + ω · 3 + · · ·

= ω + (ω + 0) + (ω + 1) + (ω + 2) + · · ·
+ (ω · 2 + 0) + (ω · 2 + 1) + (ω · 2 + 2) + · · ·
· · ·

= ω + ω + (0 + ω) + (1 + ω) + (2 + · · ·
+ ω · 2 + (0 + ω · 2) + (1 + ω · 2) + (2 + · · ·
· · ·

= ω + ω + ω + ω + · · ·
+ ω · 2 + ω · 2 + ω · 2 + · · ·
· · ·

= ω · ω + ω · ω + · · ·

= (ω · ω) · ω = ω3 = ω2·2−1



The proof of Sierpiński’s exercise relies on the fact that
ωn is indecomposable. That is, whenever α < ωn, we
have α + ωn = ωn.

Sierpiński’s exercise (and the proofs) can be formalized in
reverse mathematics, yielding:

Thm: For each positive natural number n, RCA0 proves∑
α<ωn

α = ω2n−1.

Notes:

• RCA0 is an axiom system for natural numbers and
sets of natural numbers that consists of PA with in-
duction restricted to Σ0

1 formulas and the recursive
comprehension axiom.

• In RCA0, countable well ordered sets (like
∑
α<ωn

α) can

be represented by subsets of N.

•We say RCA0 proves α = β if RCA0 proves that there
is an order preserving bijection between α and β.



For each positive natural number n, RCA0 can prove that
ωn is indecomposable. A complete analysis of indecom-
posable countable well orderings requires additional ax-
iomatic strength.

Thm: RCA0 proves these are equivalent:

1. ATR0

2. If α is a countable well ordering, then α is indecom-
posable if and only if α = ωγ for some choice of γ.

Notes:

• The axiom system ATR0 consists of RCA0 plus the
arithmetical transfinite recursion scheme.

• ATR0 is also equivalent to the statement: “ if α and β
are well orderings, then α ≤ β or β ≤ α.” (Friedman)

• Cantor used the term γ-number to denote numbers
of the form ωγ.



A generalization of Sierpiński’s exercise

In On Series of Ordinals and Combinatorics (MLQ),
Jones, Levitz and Nichols prove the following

γ lemma: Suppose γ is an ordinal and f is a non-
decreasing function from ωγ into the ordinals. Then∑

α<ωγ

f (α) = sup{f (α) · ωγ|α < ωγ}.

Notes:

• Using f (α) = α, the γ lemma computes all of Sierpiński’s
triangular numbers, plus extras.∑

α<ωω

α = sup{α · ωω|α < ωω}

= sup{ωj · ωω|j < ω}

= sup{ωω|j < ω} = ωω

•We can use reverse math to show that the γ lemma
is strictly stronger than Sierpiński’s exercise.

•We have to decide what “=” means in the γ lemma.



Suprema of well orderings

Thm: RCA0 proves these are equivalent:

1. ATR0

2. Suppose 〈αx | x ∈ β〉 is a well ordered sequence of well
orderings. Then sup〈αx | x ∈ β〉 exists. That is, there
is a well ordering α unique up to order isomorphism
satisfying

• ∀x ∈ β(αx ≤ α), and

• ∀γ(γ + 1 ≤ α→ ∃x ∈ β(αx 6≤ γ)).

Notes:

• Suppose α ≤s β means there’s an order preserving
bijection between α and an initial segment of β.

• Suppose α ≤w β means there’s an order preserving
map of α into β.

• The theorem holds if ≤ is either ≤s or ≤w.

• If ≤ is ≤s, then the theorem holds when uniqueness
is omitted.

• Question: Does 2 imply 1 when ≤ is ≤w and unique-
ness is omitted?



Analysis of the γ lemma

γ lemma: If γ is an ordinal and f is non-decreasing,∑
α<ωγ

f (α) = sup{f (α) · ωγ|α < ωγ}.

Thm: RCA0 proves these are equivalent:

1. ATR0.

2. (γ-lemma) Suppose that ωγ is well ordered and f as-
signs a well ordered set to each α < ωγ in such a way
that if α < β < ωγ then f (β) + 1 6≤ f (α). Then

• For all α < ωγ, f (α) · ωγ ≤
∑

α<ωγ f (α), and

• If δ + 1 ≤
∑

α<ωγ f (α), then there is an α < ωγ

such that f (α) · ωγ 6≤ δ.

Sketch of 2 =⇒ 1: Assume RCA0 and ¬ATR0.

Suppose α and β are incomparable indecomposable wos.

Define f (0) = α and f (n) = β for n > 0.

f (0) · ω = α + α + · · · 6≤ α + β + β + · · · =
∑

n<ω f (n)

Question: If ≤ means ≤w and f (β) + 1 6≤ f (α) is
replaced by f (α) ≤ f (β), does 2 still imply 1?
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