Reverse Mathematics of Transfinite Triangular Numbers

Jeffry L. Hirst

Appalachian State University

These slides are available at www.mathsci.appstate.edu/~jlh Click on "Slides and Posters"

An elementary exercise of Gauss:

$$
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
$$

n

An elementary exercise of Sierpiński:

For each positive natural number n , we have

$$
\sum_{\alpha<\omega^n}\alpha=\omega^{2n-1}.
$$

Sample cases:

$$
\sum_{\alpha < \omega^{1}} \alpha = 1 + 2 + 3 + \dots = \omega = \omega^{2 \cdot 1 - 1}
$$

$$
\sum_{\alpha < \omega^{2}} \alpha = 0 + 1 + 2 + \dots + \omega + \dots + \omega \cdot 2 + \dots + \omega \cdot 3 + \dots
$$

$$
= \omega + (\omega + 0) + (\omega + 1) + (\omega + 2) + \dots
$$

$$
+ (\omega \cdot 2 + 0) + (\omega \cdot 2 + 1) + (\omega \cdot 2 + 2) + \dots
$$

$$
\dots
$$

$$
= \omega + \omega + (0 + \omega) + (1 + \omega) + (2 + \dots
$$

$$
+ \omega \cdot 2 + (0 + \omega \cdot 2) + (1 + \omega \cdot 2) + (2 + \dots
$$

$$
\dots
$$

$$
= \omega + \omega + \omega + \omega + \dots
$$

$$
+ \omega \cdot 2 + \omega \cdot 2 + \dots
$$

$$
\dots
$$

$$
= \omega \cdot \omega + \omega \cdot \omega + \dots
$$

$$
= (\omega \cdot \omega) \cdot \omega = \omega^{3} = \omega^{2 \cdot 2 - 1}
$$

The proof of Sierpinski's exercise relies on the fact that ω^n is *indecomposable*. That is, whenever $\alpha < \omega^n$, we have $\alpha + \omega^n = \omega^n$.

Sierpinski's exercise (and the proofs) can be formalized in reverse mathematics, yielding:

Thm: For each positive natural number n , RCA_0 proves

$$
\sum_{\alpha<\omega^n}\alpha=\omega^{2n-1}.
$$

Notes:

- $RCA₀$ is an axiom system for natural numbers and sets of natural numbers that consists of PA with induction restricted to Σ_1^0 formulas and the **r**ecursive **c**omprehension **a**xiom.
- In RCA_0 , countable well ordered sets (like $\sum \alpha$) can $\alpha<\omega^n$ be represented by subsets of N.
- We say RCA_0 proves $\alpha = \beta$ if RCA_0 proves that there is an order preserving bijection between α and β .

For each positive natural number n, RCA_0 can prove that ω^n is indecomposable. A complete analysis of indecomposable countable well orderings requires additional axiomatic strength.

Thm: RCA_0 proves these are equivalent:

- 1. ATR_0
- 2. If α is a countable well ordering, then α is indecomposable if and only if $\alpha = \omega^{\gamma}$ for some choice of γ .

Notes:

- The axiom system ATR_0 consists of RCA_0 plus the **a**rithmetical **t**ransfinite **r**ecursion scheme.
- ATR₀ is also equivalent to the statement: " if α and β are well orderings, then $\alpha \leq \beta$ or $\beta \leq \alpha$." (Friedman)
- Cantor used the term γ*-number* to denote numbers of the form ω^{γ} .

A generalization of Sierpinski's exercise

In *On Series of Ordinals and Combinatorics* (MLQ), Jones, Levitz and Nichols prove the following

 γ **lemma**: Suppose γ is an ordinal and f is a nondecreasing function from ω^{γ} into the ordinals. Then

$$
\sum_{\alpha<\omega^{\gamma}}f(\alpha)=\sup\{f(\alpha)\cdot\omega^{\gamma}|\alpha<\omega^{\gamma}\}.
$$

Notes:

• Using $f(\alpha) = \alpha$, the γ lemma computes all of Sierpinski's triangular numbers, plus extras.

$$
\sum_{\alpha < \omega^{\omega}} \alpha = \sup \{ \alpha \cdot \omega^{\omega} | \alpha < \omega^{\omega} \}
$$

$$
= \sup \{ \omega^j \cdot \omega^{\omega} | j < \omega \}
$$

$$
= \sup \{ \omega^{\omega} | j < \omega \} = \omega^{\omega}
$$

- We can use reverse math to show that the γ lemma is strictly stronger than Sierpinski's exercise.
- We have to decide what "=" means in the γ lemma.

Thm: RCA₀ proves these are equivalent:

- 1. ATR_0
- 2. Suppose $\langle \alpha_x | x \in \beta \rangle$ is a well ordered sequence of well orderings. Then $\sup \langle \alpha_x | x \in \beta \rangle$ exists. That is, there is a well ordering α unique up to order isomorphism satisfying
	- $\forall x \in \beta (\alpha_x \leq \alpha)$, and
	- $\forall \gamma(\gamma + 1 \leq \alpha \rightarrow \exists x \in \beta(\alpha_x \nless \gamma)).$

Notes:

- Suppose $\alpha \leq_{s} \beta$ means there's an order preserving bijection between α and an initial segment of β .
- Suppose $\alpha \leq_w \beta$ means there's an order preserving map of α into β .
- The theorem holds if \leq is either \leq_s or \leq_w .
- If \leq is \leq_s , then the theorem holds when uniqueness is omitted.
- Question: Does 2 imply 1 when \leq is \leq_w and uniqueness is omitted?

Analysis of the γ lemma

 γ lemma: If γ is an ordinal and f is non-decreasing, $\sum f(\alpha) = \sup\{f(\alpha) \cdot \omega^{\gamma} | \alpha < \omega^{\gamma}\}.$ $\alpha < \omega^{\gamma}$

Thm: RCA₀ proves these are equivalent:

- 1. $ATR₀$.
- 2. (γ -lemma) Suppose that ω^{γ} is well ordered and f assigns a well ordered set to each $\alpha < \omega^{\gamma}$ in such a way that if $\alpha < \beta < \omega^{\gamma}$ then $f(\beta) + 1 \nleq f(\alpha)$. Then
	- For all $\alpha < \omega^{\gamma}$, $f(\alpha) \cdot \omega^{\gamma} \le \sum_{\alpha < \omega^{\gamma}} f(\alpha)$, and
	- If $\delta + 1 \leq \sum_{\alpha < \omega^{\gamma}} f(\alpha)$, then there is an $\alpha < \omega^{\gamma}$ such that $f(\alpha) \cdot \omega^{\gamma} \nleq \delta$.

Sketch of 2 \implies 1: Assume RCA_0 and $\neg ATR_0$.

Suppose α and β are incomparable indecomposable wos.

Define
$$
f(0) = \alpha
$$
 and $f(n) = \beta$ for $n > 0$.

 $f(0) \cdot \omega = \alpha + \alpha + \cdots \leq \alpha + \beta + \beta + \cdots = \sum_{n < \omega} f(n)$

Question: If \leq means \leq_w and $f(\beta) + 1 \nleq f(\alpha)$ is replaced by $f(\alpha) \leq f(\beta)$, does 2 still imply 1?

References

HARVEY M. FRIEDMAN Systems of second order arithmetic with restricted induction, I, II (abstracts), *J. Symbolic Logic*, vol. 41 (1976), no. 2, pp. 557–559.

JEFFRY L. HIRST Reverse mathematics and ordinal suprema, to appear in Simpson's Reverse Math 200?. Preprint available at www.mathsci.appstate.edu/~jlh Click on "Bibliography."

JEFFRY L. HIRST Reverse mathematics and ordinal exponentiation, *Ann. Pure Appl. Logic*, vol. 66 (1994), no. 1, pp. 1–18.

JAMES P. JONES, HILBERT LEVITZ, and WAR-REN D. NICHOLS On series of ordinals and combinatorics, *Math. Logic Quart.*, vol. 43(1997), pp. 121– 133.

WACŁAW SIERPIŃSKI Cardinal and ordinal num*bers*, Polska Akademia Nauk, Monografie Matematyczne, Państwowe Wydawnictwo Naukowe, Warszawa, 1958.

For these slides, go to www.mathsci.appstate.edu/~jlh and click on "Slides and Posters."