Minima of initial segments of sequences of reals

Jeffry L. Hirst Appalachian State University Boone, North Carolina

2004 Winter ASL Meeting in Phoenix

These slides appear at: www.mathsci.appstate.edu/~jlh

Subsystems of second order arithmetic for reverse math

RCA₀: First order arithmetic with induction restricted to Σ_1^0 formulas plus set comprehension for Δ_1^0 sets.

WKL₀: All axioms of RCA₀ plus Weak König's Lemma: "Every infinite 0–1 tree has an infinite path."

Models

 ω with the computable sets models RCA₀.

Every ω model of WKL₀ includes noncomputable sets.

Reverse Math

Theorem 1. (RCA_0) The following are equivalent:

1. WKL₀.

2. If f and g are injections with disjoint ranges, then there is a set Y such that for all $t \in \mathbb{N}$,

 $f(t) \in Y \text{ and } g(t) \notin Y.$

Encoding the reals A real number is a function $x : \mathbb{N} \to \mathbb{Q}$ such that

$$\forall k \forall i \ |x(k) - x(k+i)| \le 2^{-k}$$

(that is, $\langle x(i) \rangle_{i \in \mathbb{N}}$ is a rapidly converging Cauchy sequence of rationals.)

Examples of reals

- $\sqrt{2}$: 1, 1.4, 1.41, 1.414, 1.4142, ...
 - π : 3, 3.1, 3.14, 3.141, 3.1415, ...
 - $0: \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
 - $0: 0, 0, 0, 0, 0, \dots$

Relationships between reals

$$x = y$$
 means: $\forall k |x(k) - y(k)| \le 2^{-k+1}$

$$x \le y$$
 means: $\forall k \ (x(k) \le y(k) + 2^{-k+1})$

$$y < x$$
 means $x \not\leq y$,
which is $\exists k \ (y(k) + 2^{-k+1} < x(k))$

Sequences of minima

Theorem 2. (RCA₀) Let $\langle x_k \rangle_{k \in \mathbb{N}}$ be a sequence of reals. Then there is a sequence of reals $\langle u_k \rangle_{k \in \mathbb{N}}$ such that for each $k, u_k = \min\{x_j \mid j \leq k\}$. That is, for each k we have:

1.
$$\forall j \leq k \ (u_k \leq x_j)$$
 and

$$2. \exists j \leq k \ (u_k = x_j).$$

Corollary 3. Let $\langle x_k \rangle_{k \in \mathbb{N}}$ be a computable sequence of computable real numbers. Then there is a computable sequence of computable reals $\langle u_k \rangle_{k \in \mathbb{N}}$ such that for each k we have $u_k = \min\{x_j \mid j \leq k\}.$

Picking the minima

Let $u_k(j) = \min\{x_n(j) \mid n \le k\}.$

Example:

x_0 :	1	1.4	1.41	1.414	1.4142	•••	$(\sqrt{2})$
x_1 :	3	3.1	3.14	3.141	3.1415	•••	(π)
x_2 :	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	•••	(0)
<i>x</i> ₃ :	0	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{15}{64}$	•••	$\left(\frac{1}{4}\right)$

Picking the indices

Rather than constructing real number codes for the minima of initial segments, suppose we want to pick the (index of the) actual sequence element...

Theorem 4. (RCA_0) The following are equivalent:

- 1. WKL₀
- 2. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a sequence of reals, then there is a sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that

 $\forall k(x_{\mu_k} = \min\{x_j \mid j \le k\}).$

Sketch of (2) implies WKL_0

Suppose f and g are injections with disjoint ranges. Use a sequence of indices of minima to construct a separating set.

If f(3) = 0, g(2)=1, and $2 \notin \mathsf{Ran} f \cup \mathsf{Ran} g$, build:

Computability theoretic corollaries

Corollary 5. There is a computable sequence of computable reals such that no sequence of indices of minima of initial segments is computable.

Corollary 6. Given any computable sequence of computable reals, we can find a sequence of indices of minima of initial segments that is of low degree. (That is, the degree of the sequence of indices is **a** where $\mathbf{a}' \leq_{\mathbf{T}} \mathbf{0}'$.)

Question: Is there ever a computable sequence of indices?

Answer: Sometimes.

Theorem 7. (RCA₀) If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a **nonrepeating** sequence of reals, then there is a sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that $\forall k(x_{\mu_k} = \min\{x_j \mid j \leq k\})$.

Corollary 8. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a **nonrepeating** computable sequence of computable reals, then there is a computable sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that

$$\forall k(x_{\mu_k} = \min\{x_j \mid j \le k\}).$$

Picking μ_k

Example (of a nonrepeating sequence):

x_0 :	1	1.4	1.41	1.414	1.4142	• • •	$(\sqrt{2})$
<i>x</i> ₁ :	3	3.1	3.14	3.141	3.1415	•••	(π)
x_2 :	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	• • •	(0)
<i>x</i> ₃ :	0	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{15}{64}$	•••	$\left(\frac{1}{4}\right)$

Constructive Analysis vs. Computable Analysis

Computable Analyst:

We can select minima of initial segments.

We can't select the indices of the minima.

Constructive Analyst:

We can't select the indices, so we can't select the minima.

We can select the minima of nonrepeating sequences.

Reverse Mathematics

Jeffry L. Hirst. Minima of initial segments of infinite sequences of reals, Math. Logic Quarterly, **50** (2004).

Stephen G. Simpson. *Subsystems of second order arithmetic*, Springer-Verlag, Berlin, 1999.

Computable Analysis

Marian B. Pour-El and J. Ian Richards. *Computability in analysis and physics*, Springer-Verlag, Berlin, 1989.

Constructive Analysis

Errett Bishop and Douglas Bridges. *Constructive analysis*, Springer-Verlag, Berlin, 1985.