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Subsystems of second order arithmetic for reverse math

RCA0: First order arithmetic with

induction restricted to Σ0
1 formulas

plus set comprehension for ∆0
1 sets.

WKL0: All axioms of RCA0

plus Weak König’s Lemma:

“Every infinite 0–1 tree has an infinite path.”



Models
ω with the computable sets models RCA0.

Every ω model of WKL0 includes noncomputable sets.

Reverse Math

Theorem 1. (RCA0) The following are equivalent:

1. WKL0.

2. If f and g are injections with disjoint ranges, then
there is a set Y such that for all t ∈ N,

f(t) ∈ Y and g(t) /∈ Y.



Encoding the reals
A real number is a function x : N→ Q such that

∀k∀i |x(k)− x(k + i)| ≤ 2−k

(that is, 〈x(i)〉i∈N is a rapidly converging Cauchy sequence
of rationals.)

Examples of reals
√

2 : 1, 1.4, 1.41, 1.414, 1.4142, . . .

π : 3, 3.1, 3.14, 3.141, 3.1415, . . .

0 : 1, 1
2 , 1

4 , 1
8 , 1

16 , . . .

0 : 0, 0, 0, 0, 0, . . .



Relationships between reals

x = y means: ∀k |x(k)− y(k)| ≤ 2−k+1

x ≤ y means: ∀k (x(k) ≤ y(k) + 2−k+1)

y < x means x 6≤ y,
which is ∃k (y(k) + 2−k+1 < x(k))



Sequences of minima

Theorem 2. (RCA0) Let 〈xk〉k∈N be a sequence of reals.
Then there is a sequence of reals 〈uk〉k∈N such that for each
k, uk = min{xj | j ≤ k}. That is, for each k we have:

1. ∀j ≤ k (uk ≤ xj) and

2. ∃j ≤ k (uk = xj).

Corollary 3. Let 〈xk〉k∈N be a computable sequence of com-
putable real numbers. Then there is a computable sequence
of computable reals 〈uk〉k∈N such that for each k we have
uk = min{xj | j ≤ k}.



Picking the minima

Let uk(j) = min{xn(j) | n ≤ k}.

Example:

x0: 1 1.4 1.41 1.414 1.4142 . . . (
√

2)

x1: 3 3.1 3.14 3.141 3.1415 . . . (π)

x2: 1 1
2

1
4

1
8

1
16 . . . (0)

x3: 0 1
8

3
16

7
32

15
64 . . . ( 1

4 )



Picking the indices

Rather than constructing real number codes for the minima
of initial segments, suppose we want to pick the (index of
the) actual sequence element. . .

Theorem 4. (RCA0) The following are equivalent:

1. WKL0

2. If 〈xk〉k∈N is a sequence of reals, then there is a se-
quence of integers 〈µk〉k∈N such that

∀k(xµk = min{xj | j ≤ k}).



Sketch of (2) implies WKL0

Suppose f and g are injections with disjoint ranges. Use a
sequence of indices of minima to construct a separating set.

If f(3) = 0, g(2)=1, and 2 /∈ Ranf ∪ Rang, build:

x0,f : 0 0 0 -.9999 . . .
x0,g : 0 0 0 0 . . .
x1,f : -1 -1 -1 -1 . . .
x1,g : -1 -1 -1.001 -1.001 . . .
x2,f : -2 -2 -2 -2 . . .
x2,g : -2 -2 -2 -2 . . .



Computability theoretic corollaries

Corollary 5. There is a computable sequence of computable
reals such that no sequence of indices of minima of initial
segments is computable.

Corollary 6. Given any computable sequence of computable
reals, we can find a sequence of indices of minima of initial
segments that is of low degree. (That is, the degree of the
sequence of indices is a where a′ ≤T 0′.)



Question: Is there ever a computable sequence of indices?

Answer: Sometimes.

Theorem 7. (RCA0) If 〈xk〉k∈N is a nonrepeating sequence
of reals, then there is a sequence of integers 〈µk〉k∈N such
that ∀k(xµk = min{xj | j ≤ k}).

Corollary 8. If 〈xk〉k∈N is a nonrepeating computable se-
quence of computable reals, then there is a computable se-
quence of integers 〈µk〉k∈N such that

∀k(xµk = min{xj | j ≤ k}).



Picking µk

Example (of a nonrepeating sequence):

x0: 1 1.4 1.41 1.414 1.4142 . . . (
√

2)

x1: 3 3.1 3.14 3.141 3.1415 . . . (π)

x2: 1 1
2

1
4

1
8

1
16 . . . (0)

x3: 0 1
8

3
16

7
32

15
64 . . . ( 1

4 )



Constructive Analysis vs. Computable Analysis

Computable Analyst:

We can select minima of initial segments.

We can’t select the indices of the minima.

Constructive Analyst:

We can’t select the indices, so we can’t select the min-
ima.

We can select the minima of nonrepeating sequences.
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