Counterintuitive Aspects of Computable Analysis

Jeffry L. Hirst Appalachian State University

(Copies of these slides are available at: www.mathsci.appstate.edu/~jlh/snp/slides.html) A computable real number is a computable function $x : \mathbb{N} \to \mathbb{Q}$ such that $\forall k \forall i | x(k) - x(k+i) | \leq 2^{-k}$ (that is, $\langle x(i) \rangle_{i \in \mathbb{N}}$ is a rapidly converging Cauchy sequence of rational numbers.)

Examples of some computable reals:

- $\sqrt{2}$: 1, 1.4, 1.41, 1.414, 1.4142, ...
 - π : 3, 3.1, 3.14, 3.141, 3.1415, ...
 - $0: \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
 - $0: 0, 0, 0, 0, 0, \ldots$

Relationships between computable reals

$$x = y$$
 means: $\forall k |x(k) - y(k)| \le 2^{-k+1}$

 $x \le y$ means: $\forall k \ (x(k) \le y(k) + 2^{-k+1})$

y < x means $x \not\leq y$, which is $\exists k \ (y(k) + 2^{-k+1} < x(k))$

Finding minima

Theorem 1. Let $\langle x_k \rangle_{k \in \mathbb{N}}$ be a computable sequence of computable real numbers. Then there is a computable sequence of computable reals $\langle u_k \rangle_{k \in \mathbb{N}}$ such that for each k, $u_k = \min\{x_j \mid j \leq k\}$. That is, for each k we have:

(1)
$$\forall j \leq k \ (u_k \leq x_j), and$$

(2) $\exists j \leq k \ (u_k = x_j).$

Picking the minima

Let $u_k(j) = \min\{x_n(j) \mid n \le k\}.$

Example:

x_0 :	1	1.4	1.41	1.414	1.4142	• • •	$(\sqrt{2})$
x_1 :	3	3.1	3.14	3.141	3.1415	• • •	(π)
x_2 :	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	•••	(0)
<i>x</i> ₃ :	0	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{15}{64}$	•••	$\left(\frac{1}{4}\right)$

Questions:

- Is $\langle u_k \rangle_{k \in \mathbb{N}}$ a computable sequence?
- Is each u_k a computable real?
- Is $u_k = \min\{x_j \mid j \le k\}$?
- Do we know which x_j is equal to u_k ?

Question: Do we know which x_j is equal to u_k ?

Answer: Not necessarily.

Theorem 2. There is a computable sequence of computable reals $\langle x_k \rangle_{k \in \mathbb{N}}$ such that if $\langle \mu_k \rangle_{k \in \mathbb{N}}$ is any sequence of integers satisfying

$$\forall k \big(x_{\mu_k} = \min\{x_j \mid j \le k\} \big)$$

then $\langle \mu_k \rangle_{k \in \mathbb{N}}$ is not computable.

Question: Do we know which x_j is equal to u_k ?

Answer: Sometimes.

Theorem 3. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a **nonrepeating** computable sequence of computable reals, then there is a computable sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that

$$\forall k \big(x_{\mu_k} = \min\{x_j \mid j \le k\} \big).$$

Picking μ_k

Example (of a nonrepeating sequence):

x_0 :	1	1.4	1.41	1.414	1.4142	•••	$(\sqrt{2})$
x_1 :	3	3.1	3.14	3.141	3.1415	• • •	(π)
x_2 :	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	•••	(0)
x_3 :	0	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{15}{64}$	• • •	$\left(\frac{1}{4}\right)$

Constructive Analysis vs. Computable Analysis

Computable Analyst:

We can select minima of initial segments.

We can't select the indices of the minima.

Constructive Analyst:

We can't select the indices, so we can't select the minima.

We can select the minima of nonrepeating sequences.

Reverse Mathematics

Theorem 4. (RCA₀) If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a countable sequence of reals, then there is a sequence of reals $\langle u_k \rangle_{k \in \mathbb{N}}$ such that for each k, $u_k = \min\{x_j \mid j \leq k\}$.

Theorem 5. (RCA_0) The following are equivalent:

1. WKL₀

2. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a sequence of reals, then there is a sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that $\forall k(x_{\mu_k} = \min\{x_j \mid j \leq k\}).$

Reverse Mathematics

Jeffry L. Hirst. Minima of initial segments of infinite sequences of reals, Math. Logic Quarterly, **50** (2004).

Stephen G. Simpson. Subsystems of second order arithmetic, Springer-Verlag, Berlin, 1999.

Computable Analysis

Marian B. Pour-El and J. Ian Richards. *Computability* in analysis and physics, Springer-Verlag, Berlin, 1989.

Constructive Analysis

Errett Bishop and Douglas Bridges. Constructive analysis, Springer-Verlag, Berlin, 1985.