Reverse Mathematics of Free Sets

Jeff Hirst

Appalachian State University and University of Notre Dame

These slides appear at www.mathsci.appstate.edu/~jlh

- RCA_0 Second order arithmetic with comprehension for computable sets
- ACA_0 RCA₀ plus arithmetical comprehension
- ACA₀ ACA₀ plus $0^{(n)}$ exists for every n
- WKL₀ RCA₀ plus König's lemma for 0-1 trees
 - **RT** Ramsey's theorem: If $f : [\mathbb{N}]^n \to k$ then there is an infinite X such that f is constant on $[X]^n$.
- RT(3, 2) Ramsey's theorem restricted to n = 3and k = 2
 - **FS** Free Set Theorem: If $f : [\mathbb{N}]^n \to \mathbb{N}$ then there is an infinite X such that $\vec{x} \in X$ and $f(\vec{x}) \in X$ imply $f(\vec{x}) \in \vec{x}$.
 - **FS(3)** Free set theorem for n = 3
 - **TS** Thin Set Theorem: If $f : [\mathbb{N}]^n \to \mathbb{N}$ then there is an infinite X such that $f([X]^n) \neq \mathbb{N}$.

References

Proof that WKL_0 doesn't prove FS(2): Jockusch (private communication) based on Theorem 3.1 of his article *Ramsey's theorem and recursion theory*, JSL (37) 1972 page 270.

Proof that ACA_0 doesn't prove TS:

Friedman in *Issues and problems in reverse mathematics*, (Simpson co-author) pages 139-140 of Computability Theory and Its Applications (Cholak, Lempp, Lerman, and Shore editors) AMS 2000.

Other results appear in Cholak, Guisto, and Hirst's *Free sets and reverse mathematics*, to appear in Reverse Mathematics 2001 (Simpson editor). Preprints available at:

www.mathsci.appstate.edu/~jlh