OCSA: Research in reverse mathematics

Jeff Hirst Appalachian State University Boone, NC USA

with many collaborators

January 25, 2019

Mathematical Sciences Colloquium Appalachian State University

OCSA activities

Invited talks

Leaf management, September 2018 Dagstuhl Seminar 18361 Leibniz-Zentrum für Informatik.

Hindman's theorem and ultrafilters, July 2018 RaTLoCC 2018 Bertinoro International Center for Informatics.

A weak coloring principle, July 2018 Workshop on Ramsey Theory and Computability Rome Global Gateway of Notre Dame University.

Papers

Combinatorial principles equivalent to weak induction, with C. Davis, D. Hirschfeldt, J. Pardo, A. Pauly, and K. Yokoyama, submitted. [\[1\]](#page-63-0)

Leaf management, submitted. [\[5\]](#page-63-1)

Using Ramsey's theorem once, with C. Mummert, resubmitted. [\[7\]](#page-63-2)

Reverse mathematics and colorings of hypergraphs with C. Davis, J. Pardo, and T. Ransom, Archive for Mathematical Logic. [\[2\]](#page-63-3)

International contacts support student research

During his senior year, alumnus Noah Hughes gave a talk on his senior honors thesis in the logic seminar at the University of Ghent. Paul Shafer was our contact in Ghent.

Contact bait: An example of student work

Making contacts, groundwork

International workshops provide opportunities to create new contacts.

- Smaller than conferences
	- · greater interaction
	- · disciplinary focus
- More international participants
- Travel tips

Organization of the workshop may or may not be international.

Workshop example 1: Rome

Workshop on Ramsey Theory and Computability Rome Global Gateway of Notre Dame University July 9-13, 2018

Participants from:

Leeds University University of Bern Central South University of China Dartmouth College Japan Advanced Institute of Science and Technology Universita di Roma Sapienza ` Appalachian State Cornell University Universita di Pisa ` National University of Singapore University of Vienna Swansea University University of Pennsylvania Universita degli Studi di Udine `

Workshop example 2: Bertinoro, Italy

RaTLoCC18: Ramsey Theory in Logic, Combinatorics, and Complexity Bertinoro International Center for Informatics July 15-20, 2018 37 participants from Spain, Germany, USA, England, Greece, Czech Republic, Russia, Poland, Italy, Austria, France, and Canada

Basilica of San Vitale in Ravenna

Workshop example 3: Wadern, Germany

Dagstuhl Seminar 18361: Measuring the Complexity of Computational Content: From Combinatorial Problems to Analysis Leibniz-Zentrum für Informatik September 2-7, 2018 43 participants from Spain, France, USA, Germany, Austria, England, Japan, New Zealand, Italy, Singapore, Chile, and Russia

Faculty from Appalachian can pursue funding from multiple sources:

- [Office of International Education and Development](https://international.appstate.edu/facultystaff-resources/faculty-staff-funding-opportunities)
- [Board of Trustees International Research Grants](https://orsp.appstate.edu/find-funding/apply-internal-grants/board-trustees-grants)
- [Student And Faculty Excellence \(SAFE\) Fund, College of](https://cas.appstate.edu/faculty-staff/student-and-faculty-excellence-safe-fund) [Arts and Sciences](https://cas.appstate.edu/faculty-staff/student-and-faculty-excellence-safe-fund)

Part II: Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second order arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of naturals numbers.

The base system, $RCA₀$, includes

- arithmetic facts (e.g. $n + 0 = n$),
- an induction scheme (restricted to Σ_1^0 formulas), and

• recursive comprehension (computable sets exist, i.e. sets with programmable characteristic functions exist).

Adding stronger comprehension axioms creates stronger axiom systems.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

A *hypergraph* consists of vertices and edges. Edges may contain any number of vertices.

Hypergraphs with finite edges

The system ACA_0 adds arithmetical comprehension to RCA_0 (sets with arithmetically definable characteristic functions exist).

A theorem of reverse mathematics:

Theorem: Over RCA₀, the following are provably equivalent:

- 1. $ACA₀$.
- 2. Every injection has a range. (Friedman [\[4\]](#page-63-4), Simpson [\[8\]](#page-63-5)).
- 3. Suppose *H* is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of *H* has a proper 2-coloring, then *H* has a proper 2-coloring.

Hypergraphs with finite edges: Additional observations

Hypergraphs are different from graphs.

Theorem: $RCA₀$ proves the following are equivalent:

 (1) ACA₀.

(2) Suppose *H* is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of *H* has a proper 2-coloring, then *H* has a proper 2-coloring.

Theorem: $RCA₀$ proves the following are equivalent:

(1) WKL₀.

(2) Suppose *H* is a graph with finite edges presented as a sequence of characteristic functions. If every finite partial graph of *H* has a proper 2-coloring, then *H* has a proper 2-coloring.

Hypergraphs with infinite edges

For hypergraphs with infinite edges, there is no arithmetical characterization of hypergraphs with proper 2-colorings. This is a corollary of:

Theorem: $RCA₀$ proves the following are equivalent:

(1) Π_1^1 -CA₀, the comprehension scheme for Π_1^1 definable sets.

(2) HC: If $\langle H_i \rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs, then there is a function $f : \mathbb{N} \to 2$ such that $f(i) = 1$ if and only if H_i has a proper 2-coloring.

Proof sketch for $(1) \rightarrow (2)$:

 $f(i) = 0$ if and only if every 2-coloring fails to be proper for H_i . "Fails to be proper" means that for some *j*, all the vertices of edge *E^j* of *Hⁱ* match.

Hypergraphs with infinite edges: the reversal

For the reversal, we need a combinatorial version of $\Pi^1_1\text{-}\mathsf{CA}_0.$

Theorem: $RCA₀$ proves the following are equivalent:

(1) Π_1^1 -CA₀.

(2) \widehat{WF} : If $\langle T_i \rangle_{i \in \mathbb{N}}$ is a sequence of trees with integer labeled nodes, then there is a function $f : \mathbb{N} \to 2$ such that $f(i) = 1$ if and only if T_i is well founded. (Lemma IV.1.1, Simpson [\[8\]](#page-63-5))

(3) WF_L: If $\langle T_i, L_i \rangle_{i \in \mathbb{N}}$ is a sequence of trees, each equipped with a leaf set *Lⁱ* , then there is a function *f* : $\mathbb{N} \rightarrow 2$ such that $f(i) = 1$ if and only if \mathcal{T}_i is well founded.

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

Weihrauch reductions

Sample problems

WF: input a tree *T*; output 1 iff *T* is well-founded.

HC: input a hypergraph *H*; output 1 iff *H* has a proper 2-coloring.

Parallelization

HC: input an infinite sequence of hypergraphs; output list of indices of hypergraphs with proper 2-colorings.

Reductions

 $P\leq_{sW} Q$ if there are uniformly computable procedures φ and ψ such that

$$
\begin{array}{ccc}\mathsf{P_{input}} & \rightarrow_{\phi} & \mathsf{Q_{input}} \\ \downarrow & & \downarrow \\ \mathsf{P_{output}} & \leftarrow_{\psi} & \mathsf{Q_{output}}\end{array}
$$

Equivalences

 $P \equiv_{sW} Q$ iff $P \leq_{sW} Q$ and $Q \leq_{sW} P$

Weihrauch equivalences

$$
\mathsf{WF}{\equiv_{\mathsf{sW}}}\mathsf{WF}_\mathsf{L}{\equiv_{\mathsf{sW}}}\mathsf{HC}
$$

$$
\widehat{\mathsf{WF}}{\equiv_{\mathsf{sW}}}\widehat{\mathsf{WF}}_{\mathsf{L}}{\equiv_{\mathsf{sW}}}\widehat{\mathsf{HC}}
$$

Another problem

PK: input a tree *T*; output the perfect kernel of *T*.

$$
\widehat{\mathsf{WF}}{\equiv_{\mathsf{sW}}}\mathsf{PK}
$$

These results appear in *Leaf management* [\[5\]](#page-63-1)

References

- [1] Caleb Davis, Jeffry L. Hirst, Denis Hirschfeldt, Jake Pardo, Arno Pauly, and Keita Yokoyama, *Combinatorial principles equivalent to weak induction*. Submitted. Available at [arxiv.org/abs/1812.09943.](https://arxiv.org/abs/1812.09943)
- [2] Caleb Davis, Jeffry L. Hirst, Jake Pardo, and Tim Ransom, *Reverse mathematics and colorings of hypergraphs*, Archive for Mathematical Logic (2018). [DOI 10.1007/s00153-018-0654-z.](http://dx.doi.org/10.1007/s00153-018-0654-z)
- [3] Harvey Friedman, *Some systems of second order arithmetic and their use*, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235–242. [http://www.mathunion.org](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.4194&rep=rep1&type=pdf) [MR0429508.](http://www.ams.org/mathscinet-getitem?mr=429508)
- [4] Harvey Friedman, *Abstracts: Systems of second order arithmetic with restricted induction, I and II*, J. Symbolic Logic **41** (1976), 557–559. [http://www.jstor.org/stable/2272259.](http://www.jstor.org/stable/2272259)
- [5] Jeffry L. Hirst, *Leaf management*. Submitted. Available at [arxiv.org/abs/1812.09762.](https://arxiv.org/abs/1812.09762)
- [6] Jeffry L. Hirst and Noah A. Hughes, *Reverse mathematics and marriage problems with unique solutions*, Arch. Math. Logic **54** (2015), no. 1-2, 49–57. [10.1007/s00153-014-0401-z](http://dx.doi.org/10.1007/s00153-014-0401-z) [MR3304736.](https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=3304736)
- [7] Jeffry L. Hirst and Carl Mummert, *Using Ramsey's theorem once*. Submitted. Available at [arxiv.org/abs/1611.03134.](https://arxiv.org/abs/1611.03134)
- [8] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. [10.1017/CBO9780511581007](http://dx.doi.org/10.1017/CBO9780511581007) [MR2517689.](https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2517689)