Basis Theorems: Reverse mathematics and Weihrauch reductions

Jeffry Hirst, Professor Emeritus Appalachian State University Boone, NC

March 2025

Dagstuhl Seminar 25131

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basis theorems from reverse mathematics

 RCA_0 is a weak subsystem of second order arithmetic that includes axioms for recursive comprehension and induction restricted to Σ_1^0 formulas.

Basis theorems from reverse mathematics

 RCA_0 is a weak subsystem of second order arithmetic that includes axioms for recursive comprehension and induction restricted to Σ_1^0 formulas.

Theorem: (RCA₀) The following are equivalent:

- (1) $I\Sigma_2^0$, induction for Σ_2^0 formulas.
- (2) Color basis: If $f : \mathbb{N} \to k$ then there is a set consisting of those j < k appearing infinitely often in the range of f. [1]
- (3) Vector space basis: If *V* is a countable vector space of bounded dimension, then *V* has a basis. [3]
- (4) e-matroid basis: If *M* is an e-matroid of bounded dimension, then *M* has a basis. [3]

In their article On the Weihrauch degree of the additive Ramsey theorem Computability (2024) [4], Arno Pauli, Cécilia Pradic, and Giovanni Soldà noted that:

many principles equivalent to $I\Sigma_2^0$ over RCA₀ have associated Weihrauch principles related to $TC_{\mathbb{N}}^*$, $(LPO')^*$ or $TC_{\mathbb{N}}^* \times (LPO')^*$.

In their article On the Weihrauch degree of the additive Ramsey theorem Computability (2024) [4], Arno Pauli, Cécilia Pradic, and Giovanni Soldà noted that:

many principles equivalent to $I\Sigma_2^0$ over RCA₀ have associated Weihrauch principles related to $TC_{\mathbb{N}}^*$, $(LPO')^*$ or $TC_{\mathbb{N}}^* \times (LPO')^*$.

TC_ℕ: Totalization of closed choice on \mathbb{N} . Given $e : \mathbb{N} \to \mathbb{N}$ choose *n* such that either $n \notin \text{Range}(e)$ or $\mathbb{N} = \text{Range}(e)$.

LPO': Jump of the limited principle of omniscience. Given infinite binary strings $\langle p_0, p_1, \ldots \rangle$, apply LPO to $\lim_i p_i$.

× denotes parallel product
()* denotes finite parallel products

The previously mentioned basis theorems exhibit this behavior. As Weihrauch principles:

- Matroid basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]
- Vector space basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]

(ロ) (同) (三) (三) (三) (○) (○)

• Color basis is equivalent to (LPO')* [1] (with help)

The previously mentioned basis theorems exhibit this behavior. As Weihrauch principles:

- Matroid basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]
- Vector space basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]

(ロ) (同) (三) (三) (三) (○) (○)

• Color basis is equivalent to (LPO')* [1] (with help)

For basis problems, the input may affect the strength. In general, given

- a bound on the dimension, or
- the exact dimension, or
- a spanning set,

we would like to find a basis.

The previously mentioned basis theorems exhibit this behavior. As Weihrauch principles:

- Matroid basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]
- Vector space basis is equivalent to $\text{TC}^*_{\mathbb{N}}\times(\text{LPO}')^*$ [3]
- Color basis is equivalent to (LPO')* [1] (with help)

For basis problems, the input may affect the strength. In general, given

- a bound on the dimension, or
- the exact dimension, or
- a spanning set,

we would like to find a basis.

How can we reformulate basis problems to modify the Weihrauch strength?

e-matroid

An e-matroid consists of a countable set *M* and an enumeration $e : \mathbb{N} \to [M]^{<\mathbb{N}}$ of the finite dependent sets of *M*. Properties:

- \emptyset is independent.
- Finite supersets of dependent sets are dependent.
- If X and Y are independent sets and |X| < |Y|, then for some y ∈ Y the set X ∪ {y} is independent.

e-matroid

An e-matroid consists of a countable set *M* and an enumeration $e : \mathbb{N} \to [M]^{<\mathbb{N}}$ of the finite dependent sets of *M*. Properties:

- \emptyset is independent.
- Finite supersets of dependent sets are dependent.
- If X and Y are independent sets and |X| < |Y|, then for some y ∈ Y the set X ∪ {y} is independent.

If Range(e) includes all the sets of size *b*, then the dimension (rank) of the matroid (*M*, *e*) is bounded by *b*.

A basis of a matroid is a maximal independent set.

Let EMB₊ denote the problem which given input (M, e) and b, outputs a basis for (M, e).

As noted above $\text{EMB}_+ \equiv_W \text{TC}^*_{\mathbb{N}} \times (\text{LPO}')^*$ [3]

We should be able to revise EMB_+ to get principles of lower Weihrauch strength. EMB_+ inputs a bound on the dimension.

We should be able to revise EMB_+ to get principles of lower Weihrauch strength. EMB_+ inputs a bound on the dimension.

Exact dimension reformulation

Let EMB_{rank} denote the problem which given input (M, e) and the exact rank *d* of *M*, outputs a basis.

Using a bijection between M^d and \mathbb{N} we can find an enumeration of the dependent subsets of M of size d. Any set not enumerated is a basis.

Conjecture: $\text{EMB}_{\text{rank}} \equiv_W C_{\mathbb{N}}$.

Conjecture: RCA_0 proves EMB_{rank} . Perhaps $RCA_0^* \vdash EMB_{rank} \leftrightarrow I\Sigma_1^0$.

We should be able to revise EMB_+ to get principles of lower Weihrauch strength. EMB_+ inputs a bound on the dimension.

Spanning set reformulation

Defn: A set *S* is a spanning set for a matroid *M* if for every $x \in M - S$ there is an independent set $I \subset S$ such that $I \cup \{x\}$ is dependent.

We should be able to revise EMB_+ to get principles of lower Weihrauch strength. EMB_+ inputs a bound on the dimension.

Spanning set reformulation

Defn: A set *S* is a spanning set for a matroid *M* if for every $x \in M - S$ there is an independent set $I \subset S$ such that $I \cup \{x\}$ is dependent.

Let EMB_{span} denote the problem which given input (M, e) and a finite spanning set *S* of *M*, outputs a basis.

For each subset of S, a single use of LPO can determine if the subset is in the range of e. If it's independent and maximal, then it is a basis.

```
Conjecture: EMB_{span} \equiv_W LPO^*.
```

Conjecture: RCA_0 proves EMB_{span} . Perhaps $RCA_0^* \vdash EMB_{span} \leftrightarrow I\Sigma_1^0$.

Color basis recalled

Given $f : \mathbb{N} \to k$, find the color basis, that is, the set of j < k such that *j* appears infinitely often in Range(f).

Theorem: (RCA₀) $I\Sigma_2^0$ if and only if every $f : \mathbb{N} \to k$ has a color basis. [1]

(ロ) (同) (三) (三) (三) (○) (○)

Let CB_+ denote the problem which given input $f : \mathbb{N} \to k$ outputs a color basis for f.

Theorem: $CB_+ \equiv_W (LPO')^*$ [1]

Color basis recalled

Given $f : \mathbb{N} \to k$, find the color basis, that is, the set of j < k such that *j* appears infinitely often in Range(*f*).

Theorem: (RCA₀) $I\Sigma_2^0$ if and only if every $f : \mathbb{N} \to k$ has a color basis. [1]

Let CB_+ denote the problem which given input $f : \mathbb{N} \to k$ outputs a color basis for *f*.

```
Theorem: CB_+ \equiv_W (LPO')^* [1]
```

Can we reformulate color basis to increase the Weihrauch strength to $TC^*_{\mathbb{N}}\times (LPO')^*?$

The color basis is a subset of [0, k), so k is acting like a spanning set.

Color basis reformulated

Defn: A function $f : \mathbb{N} \to \mathbb{N}$ has at most *b* color basis elements if, with at most *b* exceptions, every element of Range(f) appears only finitely many times.

Conjecture: (RCA₀) $I\Sigma_2^0$ if and only if every $f : \mathbb{N} \to \mathbb{N}$ that has at most *b* color basis elements has a color basis.

(日) (日) (日) (日) (日) (日) (日)

Let CB_{size} denote the problem which given *b* and a function $f : \mathbb{N} \to \mathbb{N}$ that has at most *b* color basis elements, outputs a color basis for *f*.

Conjecture: $CB_{size} \equiv_W TC^*_{\mathbb{N}} \times (LPO')^*$.

Color basis reformulated

Defn: A function $f : \mathbb{N} \to \mathbb{N}$ has at most *b* color basis elements if, with at most *b* exceptions, every element of Range(f) appears only finitely many times.

Conjecture: (RCA₀) $I\Sigma_2^0$ if and only if every $f : \mathbb{N} \to \mathbb{N}$ that has at most *b* color basis elements has a color basis.

Let CB_{size} denote the problem which given *b* and a function $f : \mathbb{N} \to \mathbb{N}$ that has at most *b* color basis elements, outputs a color basis for *f*.

Conjecture: $CB_{size} \equiv_W TC^*_{\mathbb{N}} \times (LPO')^*$.

What about the similar problem with exact size information? Is it related to $TC_{\mathbb{N}}^{*}$? Is it equivalent to $I\Sigma_{2}^{0}$?

What about vector space results?

References

- [1] Caleb Davis, Jeffry Hirst, Silva Keohulian, Brody Miller, and Jessica Ross, *Reverse mathematics of a pigeonhole basis theorem* (2025). to appear in Computability, Link to a draft.
- [2] Damir D. Dzhafarov and Carl Mummert, *Reverse mathematics—problems, reductions, and proofs*, Theory and Applications of Computability, Springer, Cham, 2022. DOI 10.1007/978-3-031-11367-3. Zbl 07571046
- Jeffry L. Hirst and Carl Mummert, *Reverse mathematics of matroids*, Computability and complexity, Lecture Notes in Comput. Sci., vol. 10010, Springer, Cham, 2017, pp. 143–159. DOI 10.1007/978-3-319-50062-1_12. Zbl 1480.03007
- [4] Arno Pauly, Cécilia Pradic, and Giovanni Soldà, On the Weihrauch degree of the additive Ramsey theorem, Computability 13 (2024), no. 3-4, 459–483.
 DOI 10.3233/COM-230437. Zbl 07990924