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Basis theorems from reverse mathematics

RCA0 is a weak subsystem of second order arithmetic that
includes axioms for recursive comprehension and induction
restricted to Σ0

1 formulas.

Theorem: (RCA0) The following are equivalent:
(1) IΣ0

2, induction for Σ0
2 formulas.

(2) Color basis: If f : N→ k then there is a set consisting of
those j < k appearing infinitely often in the range of f . [1]

(3) Vector space basis: If V is a countable vector space of
bounded dimension, then V has a basis. [3]

(4) e-matroid basis: If M is an e-matroid of bounded
dimension, then M has a basis. [3]
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In their article
On the Weihrauch degree of the additive Ramsey theorem
Computability (2024) [4],
Arno Pauli, Cécilia Pradic, and Giovanni Soldà noted that:

many principles equivalent to IΣ0
2 over RCA0 have associated

Weihrauch principles related to TC∗N, (LPO′)∗ or TC∗N× (LPO′)∗.

TCN: Totalization of closed choice on N. Given e : N→ N
choose n such that either n /∈ Range(e) or N = Range(e).

LPO′: Jump of the limited principle of omniscience. Given
infinite binary strings 〈p0,p1, . . . 〉, apply LPO to limi pi .

× denotes parallel product
( )∗ denotes finite parallel products
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The previously mentioned basis theorems exhibit this behavior.
As Weihrauch principles:
• Matroid basis is equivalent to TC∗N × (LPO′)∗ [3]
• Vector space basis is equivalent to TC∗N × (LPO′)∗ [3]
• Color basis is equivalent to (LPO′)∗ [1] (with help)

For basis problems, the input may affect the strength.
In general, given
• a bound on the dimension, or
• the exact dimension, or
• a spanning set,

we would like to find a basis.

How can we reformulate basis problems to modify the
Weihrauch strength?
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e-matroid

An e-matroid consists of a countable set M and an enumeration
e : N→ [M]<N of the finite dependent sets of M.
Properties:
• ∅ is independent.
• Finite supersets of dependent sets are dependent.
• If X and Y are independent sets and |X | < |Y |, then for

some y ∈ Y the set X ∪ {y } is independent.

If Range(e) includes all the sets of size b, then the dimension
(rank) of the matroid (M,e) is bounded by b.

A basis of a matroid is a maximal independent set.

Let EMB+ denote the problem which given input (M,e) and b,
outputs a basis for (M,e).

As noted above EMB+ ≡W TC∗N × (LPO′)∗ [3]
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Reformulating EMB+

We should be able to revise EMB+ to get principles of lower
Weihrauch strength. EMB+ inputs a bound on the dimension.

Exact dimension reformulation

Let EMBrank denote the problem which given input (M,e) and
the exact rank d of M, outputs a basis.

Using a bijection between Md and N we can find an
enumeration of the dependent subsets of M of size d . Any set
not enumerated is a basis.

Conjecture: EMBrank ≡W CN.

Conjecture: RCA0 proves EMBrank.
Perhaps RCA∗0 ` EMBrank ↔ IΣ0

1.
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Reformulating EMB+

We should be able to revise EMB+ to get principles of lower
Weihrauch strength. EMB+ inputs a bound on the dimension.

Spanning set reformulation

Defn: A set S is a spanning set for a matroid M if for every
x ∈ M − S there is an independent set I ⊂ S such that I ∪ {x} is
dependent.

Let EMBspan denote the problem which given input (M,e) and a
finite spanning set S of M, outputs a basis.

For each subset of S, a single use of LPO can determine if the
subset is in the range of e. If it’s independent and maximal,
then it is a basis.
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Color basis recalled

Given f : N→ k , find the color basis, that is, the set of j < k
such that j appears infinitely often in Range(f ).

Theorem: (RCA0) IΣ0
2 if and only if every f : N→ k has a color

basis. [1]

Let CB+ denote the problem which given input f : N→ k
outputs a color basis for f .

Theorem: CB+ ≡W (LPO′)∗ [1]

Can we reformulate color basis to increase the Weihrauch
strength to TC∗N × (LPO′)∗?

The color basis is a subset of [0, k), so k is acting like a
spanning set.
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Color basis reformulated

Defn: A function f : N→ N has at most b color basis elements
if, with at most b exceptions, every element of Range(f )
appears only finitely many times.

Conjecture: (RCA0) IΣ0
2 if and only if every f : N→ N that has at

most b color basis elements has a color basis.

Let CBsize denote the problem which given b and a function
f : N→ N that has at most b color basis elements, outputs a
color basis for f .

Conjecture: CBsize ≡W TC∗N × (LPO′)∗.

What about the similar problem with exact size information? Is
it related to TC∗N? Is it equivalent to IΣ0

2?

What about vector space results?
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