Graphs, reverse mathematics, and Weihrauch reductions

Jeff Hirst Appalachian State University Boone, North Carolina, USA

October 17, 2016 CT Logic Seminar Department of Mathematics, University of Connecticut

Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by proving equivalence results over...

The base theory RCA₀

Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by proving equivalence results over...

The base theory RCA₀:

Variables for natural numbers and sets of natural numbers Axioms

Arithmetic axioms

(e.g. n + 0 = n and n + (m') = (n + m)')

Induction for particularly simple formulas

Recursive comprehension:

If you can compute a set, then it exists.

A theorem of RCA₀

Thm: (RCA₀) For any $X \subset \mathbb{N}$, the set $Y = \{n + 1 \mid n \in X\}$ exists.

An example:

n	0	1	2	3	4	5	6
Xx	1	0	0	1	1	0	0
χy	0	1	0	0	1	1	0

A theorem of RCA₀

Thm: (RCA₀) For any $X \subset \mathbb{N}$, the set $Y = \{n + 1 \mid n \in X\}$ exists.

An example:

A proof sketch: Given χ_x , define

$$\chi_{y}(n) = \begin{cases} 0 & \text{if } n = 0, \\ \chi_{x}(n-1) & \text{if } n \neq 0. \end{cases}$$

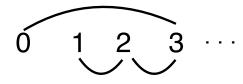
An equivalence theorem!

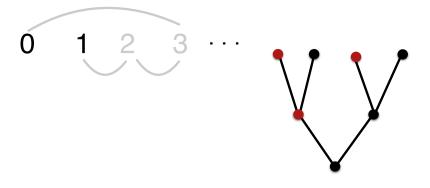
Thm: (RCA₀) The following are equivalent:

- (1) WKL₀: Every infinite 0-1 tree has an infinite path.
- (2) If every finite subgraph of *G* can be 2-colored, then *G* can be 2-colored.

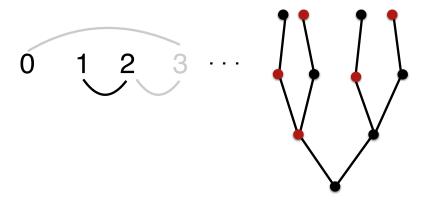
Proof sketch:

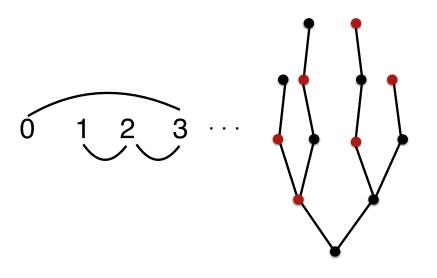
- (1) \rightarrow (2) Given a graph, build a tree such that every path computes a coloring.
- (2) \rightarrow (1) Given a tree, build a graph such that every 2-coloring computes a path.

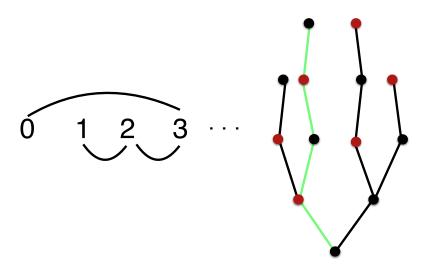




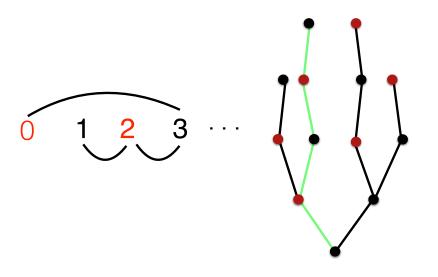
$Graph {\rightarrow} tree \ and \ path {\rightarrow} coloring$

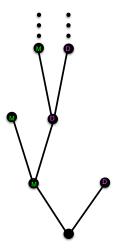


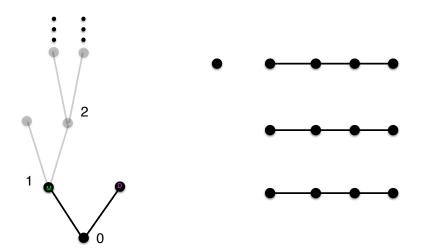


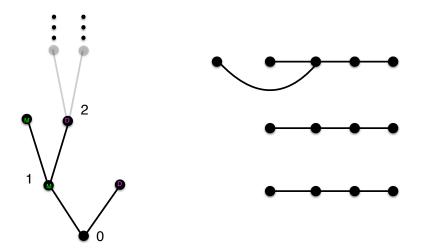


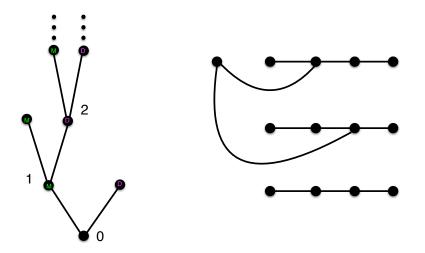
$Graph {\rightarrow} tree \ and \ path {\rightarrow} coloring$

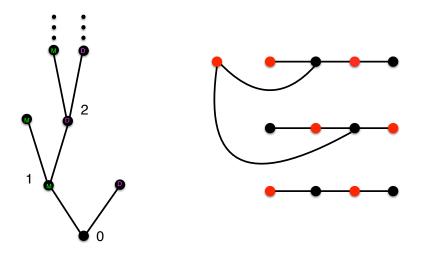


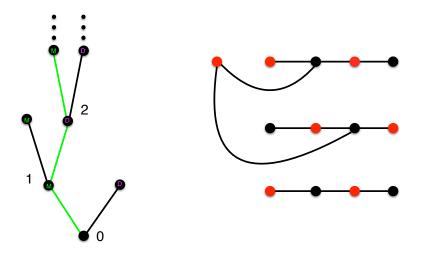












By the way: More things equivalent to WKL₀

Thm: (RCA₀) The following are equivalent:

- 1. WKL₀
- 2. If every finite subgraph of *G* is 2-colorable, then *G* is 2-colorable. [4]
- 3. Every continuous function on [0, 1] is bounded. [9]
- Every continuous function on [0, 1] is Riemann integrable.
 [9] [7]
- 5. Every open cover of [0, 1] has a finite subcover. [2]
- 6. Every countable commutative ring has a prime ideal. [3]

Many theorems of mathematics are either provable in RCA₀ or equivalent to one of: WKL₀, ACA₀, ATR₀, and Π_1^1 -CA₀

An alternative approach: Weihrauch reductions

We consider *problems* of the form $P : \forall x(p_1(x) \rightarrow \exists y p_2(x, y))$ $p_1(x)$ means x is an instance of the problem P $p_2(x, y)$ means y is a solution of the instance x of the problem P.

In this setting Q $\leqslant_{\it W}$ P means there are computable functionals ψ and ϕ such that

Note: φ can use information about x_Q to compute y_Q . (This is weak reduction.)

Weihrauch reductions: A concrete example

Consider the problems:

Problem P: Every infinite 0-1 tree has a path.

Problem Q: Every locally 2-colorable graph has a 2-coloring.

Our previous argument actually shows $Q \leq_W P$:

where

ψ turns graphs into trees, and φ turns paths into colorings. We also showed $P \leq_W Q$, so $P \equiv_W Q$.

Weihrauch reduction: Extra milage

In the Weihrauch literature, \hat{P} is used to denote the parallelization of P. A problem for \hat{P} consists of an infinite sequence of instances of P, and a solution for \hat{P} consists of the associated infinite sequence of solutions. Because of the uniformity of Weihrauch reductions, we have the following general result.

Thm: If
$$P \leq_W Q$$
 then $\widehat{P} \leq_W \widehat{Q}$.

Consequently, if

P: Every infinite 0-1 tree has a path.

Q: Every locally 2-colorable graph has a 2-coloring. then $\widehat{P}\equiv_W \widehat{Q}.$

Toward formalizing Weihrauch reductions

We would like to get proof theoretic results from Weihrauch reductions. The functionals ϕ and ψ are not objects of second order arithmetic. However, an analog of RCA₀ exists for higher order objects.

An axiom system formulated by Kohlenbach [6]

 RCA_0^{ω} includes:

- $\widehat{\mathsf{E}}$ - $\widehat{\mathsf{HA}}^{\omega}_{\uparrow}$ Formal arithmetic in all finite types with restricted induction and primitive recursion The law of the excluded middle ($A \lor \neg A$)
- QF-AC^{1,0} A choice scheme that implies the recursive comprehension axiom (RCA)

Formalizing Weihrauch reductions

Given problems:

 $\mathsf{P}: \forall x (p_1(x) \to \exists y \, p_2(x, y)) \text{ and } \mathsf{Q}: \forall x (q_1(x) \to \exists y \, q_2(x, y))$

in the language of RCA^ω_0 , we use $\mathsf{Q} \leqslant_W \mathsf{P}$ to abbreviate

 $\exists \phi \exists \psi \forall u (q_1(u) \to (p_1(\phi(u)) \land \forall y [p_2(\phi(u), y) \to q_2(u, \psi(u, y))]))$

Which says that there are functionals ϕ and ψ such that

$q_1(u)$ If *u* is an instance of Q $p_1(\varphi(u))$ then $\varphi(u)$ is an instance of P

- $p_2(\phi(u), y)$ such that whenever y is a solution the instance $\phi(u)$ of the problem P
- $q_2(u, \psi(u, y)) \psi(u, y)$ computes a solution to the instance *u* of the problem Q

For many problems, if *i*RCA₀^{ω} proves that such a φ and ψ exist, then analogous computable functionals exist. (The converse is not true and the use of the intuitionistic system matters.)

Formalized reductions

Useful features of formalized Weihrauch reductions:

Thm: If *P* and *Q* are nice and $i\text{RCA}_0^{\omega} \vdash P \leq_W Q$, then $P \leq_W Q$. For more about $i\text{RCA}_0^{\omega}$ and *nice* see Hirst and Mummert's "Using Ramsey's Theorem Once."

Thm: If $\text{RCA}_0^{\omega} \vdash P \leq_W Q$, then $\text{RCA}_0 \vdash Q \rightarrow P$.

Thm: $\operatorname{RCA}_0^{\omega} \vdash P \leq_W Q \to \widehat{P} \leq_W \widehat{Q}.$

Formalized reductions

Useful features of formalized Weihrauch reductions:

Thm: If *P* and *Q* are nice and $i\text{RCA}_0^{\omega} \vdash P \leq_W Q$, then $P \leq_W Q$. For more about $i\text{RCA}_0^{\omega}$ and *nice* see Hirst and Mummert's "Using Ramsey's Theorem Once."

Thm: If $\text{RCA}_0^{\omega} \vdash P \leq_W Q$, then $\text{RCA}_0 \vdash Q \rightarrow P$.

Thm:
$$\operatorname{RCA}_0^{\omega} \vdash P \leq_W Q \to \widehat{P} \leq_W \widehat{Q}$$
.

If we write

WKL₀ for "every infinite 0-1 tree has an infinite path"

G for "every locally 2-colorable graph has a 2-coloring" then

$$\begin{array}{l} \mathsf{RCA}_0^{\omega} \vdash \mathsf{WKL}_0 \equiv_W G \\ \mathsf{RCA}_0^{\omega} \vdash \widehat{\mathsf{WKL}}_0 \equiv_W \widehat{G} \\ \mathsf{RCA}_0 \vdash \widehat{\mathsf{WKL}}_0 \leftrightarrow \widehat{G} \end{array}$$

More reverse math consequences

We know that: $\mathsf{RCA}_0 \vdash \widehat{\mathsf{WKL}_0} \leftrightarrow \widehat{G}$

It is also known that: $RCA_0 \vdash \widehat{WKL_0} \leftrightarrow WKL_0$

Thm: (RCA₀) The following are equivalent:

- 1. WKL₀
- 2. WKL₀
- 3. G: Every locally 2-colorable graph is 2-colorable.
- 4. \widehat{G} : Every infinite sequence of locally 2-colorable graphs has a corresponding infinite sequence of 2-colorings.

Note: $\operatorname{RCA}_0^{\omega}$ proves that $G \equiv_W \operatorname{WKL}_0 \equiv_W \widehat{G} \equiv_W \widehat{\operatorname{WKL}}_0$.

Parallelization can affect strength

For the 2-coloring problem G, $G \equiv_W \widehat{G}$ and $\operatorname{RCA}_0 \vdash G \leftrightarrow \widehat{G}$.

Not all combinatorial theorems behave like G when parallelized. For example...

Ramsey's Theorem for pairs and two colors RT(2, 2) says: If the edges of an infinite complete graph are 2-colored, then there is an infinite subset of the vertices such that the corresponding complete subgraph is monochromatic.

 $RCA_0 \vdash RT(2,2) \leftrightarrow ACA_0$, but by Seetapun and Slaman's theorem [8], $RCA_0 \not\vdash RT(2,2) \rightarrow ACA_0$.

Parallelization can affect strength

For Weihrauch reducibility, just two applications of Ramsey's theorem cannot be reduced to a single use,

```
(\mathsf{RT}(2,2),\mathsf{RT}(2,2)) \not\leq_W \mathsf{RT}(2,2)
```

This is a consequence of the *Squashing Theorem* of Dzhafarov et al [1], which shows that if true,

$$(\mathsf{RT}(2,2),\mathsf{RT}(2,2)) \leqslant_W \mathsf{RT}(2,2)$$

would imply

 $\widehat{\mathsf{RT}(2,2)} \leqslant_{W} \mathsf{RT}(2,2)$

contradicting a theorem of Jockusch [5]

Of course, $RCA_0 \vdash RT(2, 2) \rightarrow (RT(2, 2), RT(2, 2))$, so the connection between provability and Weihrauch reducibility is not simple. (Advertisement for the Logic Colloquium.)

An idea from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_W P$ implies $\widehat{P} \leq_W P$ (provided *P* is nice)

Compress the sequence $f0, f1, \ldots$ into a single instance h0.

$$h0 \left\{ \begin{array}{cccc} f0 & \bullet & \bullet & \bullet & \bullet \\ f1 & \bullet & \bullet & \bullet & \bullet \end{array} \right.$$

An idea from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_W P$ implies $\widehat{P} \leq_W P$ (provided P is nice)

Compress the sequence f0, f1, ... into a single instance h0.

$$h0 \left\{ \begin{array}{ccccc} f0 & \bullet & \bullet & \bullet & \bullet \\ h1 \left\{ \begin{array}{ccccc} f1 & \bullet & \bullet & \bullet & \bullet \\ f2 & \bullet & \bullet & \bullet & \bullet \end{array} \right. \right.$$

An idea from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_W P$ implies $\widehat{P} \leq_W P$ (provided *P* is nice)

Compress the sequence $f0, f1, \ldots$ into a single instance h0.

$$h0 \begin{cases} f0 \bullet \bullet \bullet \bullet \bullet \bullet \\ h1 \begin{cases} f1 \bullet \bullet \bullet \bullet \bullet \bullet \\ h2 \begin{cases} f2 \bullet \bullet \bullet \bullet \bullet \\ f3 \bullet \bullet \bullet \bullet \bullet \\ \end{cases} \end{cases}$$

An idea from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_W P$ implies $\widehat{P} \leq_W P$ (provided *P* is nice)

Assume the initial outputs of *h*1 are 0.

$$h0 \begin{cases} f0 & \bullet & \bullet & \bullet \\ 0 & 0 & \bullet & \bullet \\ h1 \begin{cases} f2 & \bullet & \bullet & \bullet \\ h2 \begin{cases} f2 & \bullet & \bullet & \bullet \\ f3 & \bullet & \bullet & \bullet \\ \end{cases}$$

An idea from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_W P$ implies $\widehat{P} \leq_W P$ (provided tails of solutions of *P* are solutions)

Assume the initial outputs of *h*2 are 0.

$$h0 \begin{cases} f0 \bullet \bullet \bullet \bullet \bullet \bullet \\ 0 & 0 \bullet \bullet \bullet \bullet \bullet \\ h1 \begin{cases} 0 & 0 & 0 & 0 \bullet \bullet \bullet \\ h2 \begin{cases} 0 & 0 & 0 & 0 & 0 \bullet \bullet \\ f3 & \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \end{array} \end{cases}$$

Some references

[1] Francois G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer, On uniform relationships between combinatorial problems. Trans. Amer. Math. Soc. 368 (2016), no. 2, 1321-1359. DOI 10.1090/tran/6465 MR3430365

[2] Harvey Friedman, Abstracts; Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic 41 (1976), 557-559. http://www.jstor.org/stable/2272259.

[3] Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith, Countable algebra and set existence axioms, Ann. Pure Appl. Logic 25 (1983), no. 2, 141-181. DOI 10.1016/0168-0072(83)90012-X MB725732

- [4] Jeffry L, Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987). Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10 1090/conm/106/1057822 MR1057822
- [5] Carl G. Jockusch Jr., Ramsey's theorem and recursion theory, J. Symbolic Logic 37 (1972), 268–280. DOI 10 2307/2272972 MR0376319
- [6] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse Mathematics 2001 (Stephen G. Simpson, ed.). Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281-295. www.aslonline.org
- [7] Marian B. Pour-El and J. Ian Richards, Computability in analysis and physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989. https://projecteuclid.org/euclid.pl/1235422916 MR1005942

[8] David Seetapun and Theodore A. Slaman. On the strength of Ramsey's theorem. Notre Dame J. Formal Logic 36 (1995), no. 4, 570-582. DOI 10.1305/ndifl/1040136917 MR1368468.

[9] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007

MR2185441.

MR2517689.