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Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by
proving equivalence results over. . .

The base theory RCA0

:

Variables for natural numbers and sets of natural numbers

Axioms

Arithmetic axioms
(e.g. n + 0 = n and n + (m′) = (n + m)′)

Induction for particularly simple formulas

Recursive comprehension:
If you can compute a set, then it exists.



Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by
proving equivalence results over. . .

The base theory RCA0:

Variables for natural numbers and sets of natural numbers

Axioms

Arithmetic axioms
(e.g. n + 0 = n and n + (m′) = (n + m)′)

Induction for particularly simple formulas

Recursive comprehension:
If you can compute a set, then it exists.



A theorem of RCA0

Thm: (RCA0) For any X ⊂ N, the set Y = {n + 1 | n ∈ X } exists.

An example:
n 0 1 2 3 4 5 6
χx 1 0 0 1 1 0 0
χy 0 1 0 0 1 1 0

A proof sketch: Given χx , define

χy (n) =

{
0 if n = 0,
χx(n − 1) if n 6= 0.
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An equivalence theorem!

Thm: (RCA0) The following are equivalent:
(1) WKL0: Every infinite 0-1 tree has an infinite path.
(2) If every finite subgraph of G can be 2-colored, then G can

be 2-colored.

Proof sketch:
(1)→(2) Given a graph, build a tree such that every path

computes a coloring.
(2)→(1) Given a tree, build a graph such that every 2-coloring

computes a path.



Graph→tree and path→coloring
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By the way: More things equivalent to WKL0

Thm: (RCA0) The following are equivalent:
1. WKL0

2. If every finite subgraph of G is 2-colorable, then G is
2-colorable. [4]

3. Every continuous function on [0,1] is bounded. [9]
4. Every continuous function on [0,1] is Riemann integrable.

[9] [7]
5. Every open cover of [0,1] has a finite subcover. [2]
6. Every countable commutative ring has a prime ideal. [3]

Many theorems of mathematics are either provable in RCA0 or
equivalent to one of: WKL0, ACA0, ATR0, and Π1

1-CA0



An alternative approach: Weihrauch reductions

We consider problems of the form P : ∀x(p1(x)→ ∃y p2(x , y))
p1(x) means x is an instance of the problem P

p2(x , y) means y is a solution of the instance x of the
problem P.

In this setting Q 6W P means there are computable functionals
ψ and ϕ such that

ψ

xQ −→ xP
↓ ↓

yQ ←− yP
ϕ

Note: ϕ can use information about xQ to compute yQ. (This is
weak reduction.)



Weihrauch reductions: A concrete example

Consider the problems:
Problem P: Every infinite 0-1 tree has a path.
Problem Q: Every locally 2-colorable graph has a
2-coloring.

Our previous argument actually shows Q 6W P:

ψ

xQ −→ xP
↓ ↓

yQ ←− yP
ϕ

where
ψ turns graphs into trees, and ϕ turns paths into colorings.

We also showed P 6W Q, so P ≡W Q.



Weihrauch reduction: Extra milage

In the Weihrauch literature, P̂ is used to denote the
parallelization of P. A problem for P̂ consists of an infinite
sequence of instances of P, and a solution for P̂ consists of the
associated infinite sequence of solutions. Because of the
uniformity of Weihrauch reductions, we have the following
general result.

Thm: If P 6W Q then P̂ 6W Q̂.

Consequently, if
P: Every infinite 0-1 tree has a path.
Q: Every locally 2-colorable graph has a 2-coloring.

then P̂ ≡W Q̂.



Toward formalizing Weihrauch reductions

We would like to get proof theoretic results from Weihrauch
reductions. The functionals ϕ and ψ are not objects of second
order arithmetic. However, an analog of RCA0 exists for higher
order objects.

An axiom system formulated by Kohlenbach [6]

RCAω
0 includes:

Ê-HAω
� Formal arithmetic in all finite types with

restricted induction and primitive recursion
The law of the excluded middle (A ∨ ¬A)

QF-AC1,0 A choice scheme that implies the recursive
comprehension axiom (RCA)



Formalizing Weihrauch reductions
Given problems:
P : ∀x(p1(x)→ ∃y p2(x , y)) and Q : ∀x(q1(x)→ ∃y q2(x , y))

in the language of RCAω
0 , we use Q 6W P to abbreviate

∃ϕ∃ψ∀u (q1(u)→ (p1(ϕ(u))∧ ∀y [p2(ϕ(u), y)→ q2(u,ψ(u, y))]))

Which says that there are functionals ϕ and ψ such that
q1(u) If u is an instance of Q

p1(ϕ(u)) then ϕ(u) is an instance of P
p2(ϕ(u), y) such that whenever y is a solution the instance

ϕ(u) of the problem P
q2(u,ψ(u, y)) ψ(u, y) computes a solution to the instance u of

the problem Q

For many problems, if iRCAω
0 proves that such a ϕ and ψ exist,

then analogous computable functionals exist. (The converse is
not true and the use of the intuitionistic system matters.)



Formalized reductions
Useful features of formalized Weihrauch reductions:

Thm: If P and Q are nice and iRCAω
0 ` P 6W Q, then

P 6W Q.
For more about iRCAω

0 and nice see Hirst and Mummert’s
“Using Ramsey’s Theorem Once.”

Thm: If RCAω
0 ` P 6W Q, then RCA0 ` Q → P.

Thm: RCAω
0 ` P 6W Q → P̂ 6W Q̂.

If we write
WKL0 for “every infinite 0-1 tree has an infinite path”

G for “every locally 2-colorable graph has a 2-coloring”
then

RCAω
0 `WKL0 ≡W G

RCAω
0 ` ŴKL0 ≡W Ĝ

RCA0 ` ŴKL0 ↔ Ĝ
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More reverse math consequences

We know that: RCA0 ` ŴKL0 ↔ Ĝ

It is also known that: RCA0 ` ŴKL0 ↔WKL0

Thm: (RCA0) The following are equivalent:
1. WKL0

2. ŴKL0

3. G: Every locally 2-colorable graph is 2-colorable.

4. Ĝ: Every infinite sequence of locally 2-colorable graphs
has a corresponding infinite sequence of 2-colorings.

Note: RCAω
0 proves that G ≡W WKL0 ≡W Ĝ ≡W ŴKL0.



Parallelization can affect strength

For the 2-coloring problem G, G ≡W Ĝ and RCA0 ` G↔ Ĝ.

Not all combinatorial theorems behave like G when parallelized.
For example. . .

Ramsey’s Theorem for pairs and two colors RT(2,2) says:
If the edges of an infinite complete graph are 2-colored, then
there is an infinite subset of the vertices such that the
corresponding complete subgraph is monochromatic.

RCA0 ` ̂RT(2,2)↔ ACA0, but by Seetapun and Slaman’s
theorem [8], RCA0 6` RT(2,2)→ ACA0.



Parallelization can affect strength
For Weihrauch reducibility, just two applications of Ramsey’s
theorem cannot be reduced to a single use,

(RT(2,2),RT(2,2)) 66W RT(2,2)

This is a consequence of the Squashing Theorem of Dzhafarov
et al [1], which shows that if true,

(RT(2,2),RT(2,2)) 6W RT(2,2)

would imply
̂RT(2,2) 6W RT(2,2)

contradicting a theorem of Jockusch [5]

Of course, RCA0 ` RT(2,2)→ (RT(2,2),RT(2,2)), so the
connection between provability and Weihrauch reducibility is
not simple. (Advertisement for the Logic Colloquium.)



A word on the Squashing theorem:

An idea from the proof of the:

Squashing Theorem: 〈P,P〉 6W P implies P̂ 6W P
(provided P is nice)

Compress the sequence f0, f1, . . . into a single instance h0.

h0
{

f0 • • • • • •
f1 • • • • • •
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A word on the Squashing theorem:

An idea from the proof of the:
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A word on the Squashing theorem:

An idea from the proof of the:

Squashing Theorem: 〈P,P〉 6W P implies P̂ 6W P
(provided tails of solutions of P are solutions)

Assume the initial outputs of h2 are 0.

h0


f0 • • • • • •

h1


0 0 • • • •

h2
{

0 0 0 0 • •
f3 • • • • • •
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