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Reverse field theory

In the reverse math setting (second order arithmetic with limits
on comprehension and induction) a field is a countable set with
operations that satisfy the usual field axioms. One can encode
copies of familiar fields like Q or Q(

p
2).

If every non-constant polynomial in K has a root in K , we say K

is algebraically closed. An algebraic closure of F is an
algebraically closed field F with an embedding ' : F ! F .

RCA0 ` every field has an algebraic closure.

RCA0: recursive comprehension axiom
WKL0 $ algebraic closures are unique.

WKL0: weak König’s lemma
ACA0 $ fields are subsets of their algebraic closures.

ACA0: arithmetic comprehension axiom
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If every non-constant polynomial in K has a root in K , we say K

is algebraically closed. An algebraic closure of F is an
algebraically closed field F with an embedding ' : F ! F .

RCA0 ` every field has an algebraic closure.

WKL0 $ algebraic closures are unique.

ACA0 $ fields are subsets of their algebraic closures.

These results appear in Friedman, Simpson, and Smith’s paper
[1] and also in Simpson’s book [5]. They are related to earlier
results in recursive (computable) algebra.



Extending automorphisms

For this talk, we will concentrate on characteristic 0 fields.

Theorem 1 (RCA0) The following are equivalent:
(1) WKL0.
(2) Let F be a field with an algebraic closure F . If ↵ 2 F and

' : F (↵) ! F (↵) is an automorphism of F (↵) that fixes F ,
then ' extends to an F -automorphism of F .

Ideas from the proof of (1) ! (2):
Build a tree of initial segments of F -automorphisms of F .
At each node map x 2 F to some root of some polynomial
it satisfies. (Bounded levels.)
Stop extending initial non-automorphisms.
Any infinite path codes an F -automorphism.



Theorem 1 (RCA0) The following are equivalent:
(1) WKL0.
(2) Let F be a field with an algebraic closure F . If ↵ 2 F and

' : F (↵) ! F (↵) is an automorphism of F (↵) that fixes F ,
then ' extends to an F -automorphism of F .

Ideas from the proof of (2) ! (1):
Separate the ranges of disjoint positive injections f and g.
Let F = Q[

p
p

f(i),
p

2p

g(i)], note that
p

2 /2 F .

Define ' : F (
p

2) ! F (
p

2) by '(a + b

p
2) = a - b

p
2.

Use (2) to extend ' to Q.
Since ' fixes F , {j | '(

p
p

j

) =
p

p

j

} includes the range of f

and avoids the range of g.



Nontrivial automorphisms
Theorem 2 (RCA0) The following are equivalent:

1. WKL0.

2. Let F be a field and let K be a proper algebraic extension
of F . Suppose that every irreducible polynomial over F that
has a root in K splits into linear factors in K . Then there is
a non-trivial F -automorphism of K .

Theorem (Metakides and Nerode [4]) There is a recursively
presented field F with a recursively presented algebraic
extension K such that K has many F -automorphisms, but the
only computable F -automorphism is the identity.



Nontrivial automorphisms
Theorem 2 (RCA0) The following are equivalent:

1. WKL0.
2. Let F be a field and let K be a proper algebraic extension

of F . Suppose that every irreducible polynomial over F that
has a root in K splits into linear factors in K . Then there is
a non-trivial F -automorphism of K .

Ideas from the reversal:
Separate the ranges of disjoint positive injections f and g.
Let K = Q(

p
p

i

| i 2 N).
Let F = Q(

p
p

i

p
p(i,g(j)),

p
p(i,f(j)) | i , j 2 N).

Prove that
p

2 /2 F .
If ' is a non-identity F -autom. of K , it moves some

p
p

i

.
For that value of i , {j | '(

p
p(i,j)) =

p
p(i,j)} includes the

range of f and avoids the range of g.



Notions of normality

Here are several versions of “K is a normal extension of F .”
The first three are from Lang [3].
NOR1: Every irred. polynomial over F that has a root in K splits completely over K.
NOR2: K is the splitting field of some sequence of polynomials over F.
NOR3: If ' : K ! F is an F -embedding, then ' is an F -automorphism of K .
NOR4: If ' : F ! F is an F -automorphism, then ' is an F -automorphism on K .

Thm 3: RCA0 proves NOR1 $ NOR2 ! NOR3 ! NOR4.

Thm 4 (RCA0) The following are equivalent:

1. WKL0

2. NOR4 ! NOR2
3. NOR4 ! NOR3
4. NOR3 ! NOR2



Isomorphic towers

Theorem 5 (RCA0) The following are equivalent:
1. ACA0.
2. Suppose K = hk

i

i
i2N and J = hj

i

i
i2N are algebraic

extensions of F . If for all n 2 N, F (k1, . . . , kn

) �
F

J and
F (j1, . . . , jn) �

F

K , then K

⇠=
F

J.

Theorem 6 (RCA0) The following are equivalent:
1. WKL0.
2. Let hF (~↵

i

) | i 2 Ni and hF (~�
i

) | i 2 Ni be increasing
sequences of finite NOR1-normal algebraic extensions of
F . Let K =

S
i2N F (~↵

i

) and let J =
S

i2N F (~�
i

). If for all
i 2 N, F (~↵

i

) �
F

J and F (~�
i

) �
F

K , then K

⇠=
F

J.
The reversal for Theorem 6 is a construction of Miller and
Shlapentokh.
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