Counting uses of a theorem

Jeff Hirst Appalachian State University Boone, North Carolina, USA

Joint work with Carl Mummert, Marshall University

October 7, 2016

Mathematical Sciences Department Colloquium Appalachian State University

Can you prove RT(2,4) with one use of RT(2,2)?

Can you prove RT(2, 4) with one use of RT(2, 2)?

RT(2, n) is Ramsey's theorem for pairs and n colors:

Given $f:([\mathbb{N}]^2) \to n$, we can find an infinite $X \subset \mathbb{N}$ and an i < n such that $f([X]^2) = i$.

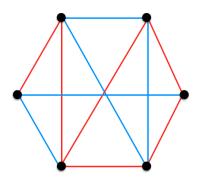
Vocabulary:

f is a coloring with n colors.

X is an infinite monochromatic set.

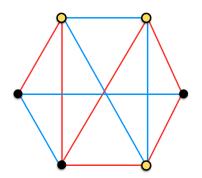
Pictures related to RT(2, 2)

Theorem: (RT(2,2)) If G is the complete graph with vertices $V = \{v_0, v_1, \ldots\}$, and $f : [V]^2 \to \{\text{red, blue}\}$ colors the edges of G, then there is an infinite $S \subset V$ such that the subgraph with vertices from S is monochromatic.



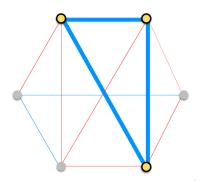
Pictures related to RT(2, 2)

Theorem: (RT(2,2)) If G is the complete graph with vertices $V = \{v_0, v_1, \ldots\}$, and $f : [V]^2 \to \{\text{red, blue}\}$ colors the edges of G, then there is an infinite $S \subset V$ such that the subgraph with vertices from S is monochromatic.



Pictures related to RT(2, 2)

Theorem: (RT(2,2)) If G is the complete graph with vertices $V = \{v_0, v_1, \ldots\}$, and $f : [V]^2 \to \{\text{red, blue}\}$ colors the edges of G, then there is an infinite $S \subset V$ such that the subgraph with vertices from S is monochromatic.



Further motivation

 RCA_0 can prove RT(2, 4) with two uses of RT(2, 2).

Given $f: [\mathbb{N}]^2 \to 4$, define:

$$g_1(m, n) = \begin{cases} 0 & \text{if } f(m, n) \in \{0, 1\} \\ 1 & \text{if } f(m, n) \in \{2, 3\} \end{cases}$$

Let $X = \{x_0, x_1, ...\}$ be an infinite monochromatic set for g_1 . Note that $f([X]^2) \in \{0, 1\}$ or $f([X]^2) \in \{2, 3\}$.

Further motivation

 RCA_0 can prove RT(2, 4) with two uses of RT(2, 2).

Given $f: [\mathbb{N}]^2 \to 4$, define:

$$g_1(m, n) = \begin{cases} 0 & \text{if } f(m, n) \in \{0, 1\} \\ 1 & \text{if } f(m, n) \in \{2, 3\} \end{cases}$$

Let $X = \{x_0, x_1, \dots\}$ be an infinite monochromatic set for g_1 . Note that $f([X]^2) \in \{0, 1\}$ or $f([X]^2) \in \{2, 3\}$. Define:

$$g_2(m,n) = \begin{cases} 0 & \text{if } f(x_m, x_n) \text{ is even} \\ 1 & \text{if } f(x_m, x_n) \text{ is odd} \end{cases}$$

Let Y be an infinite monochromatic set for g_2 . Then $Z = \{x_m \mid m \in Y\}$ is monochromatic for f.

Can you prove RT(2, 4) with one use of RT(2, 2)?

Answers:

Can you prove RT(2, 4) with one use of RT(2, 2)?

Answers:

NO

YES

Can you prove RT(2, 4) with one use of RT(2, 2)?

Answers:

NO: The intuitionistic system $iRCA_0^{\omega}$ cannot prove RT(2, 4) with one typical use of RT(2, 2).

YES: RCA₀ can prove RT(2, 4) with one use of RT(2, 2).

One is not enough: Vocabulary

An axiom system formulated by Kohlenbach [3]

 $iRCA_0^{\omega}$ includes:

E-HA^ω Intuitionistic arithmetic in all finite types with restricted induction and primitive recursion

QF-AC^{1,0} A choice scheme that implies the recursive comprehension axiom (RCA)

Note: Intuitionistic systems cannot prove all instances of the law of the excluded middle: $\neg A \lor A$

We consider *problems* of the form $P : \forall x (p_1(x) \to \exists y \, p_2(x, y))$ $p_1(x)$ means x is an instance of the problem P $p_2(x, y)$ means y is a solution of the instance x of the problem P.

One is not enough: What is does recursive mean?

A function $f: \mathbb{N} \to \mathbb{N}$ is recursive (or computable) if there is a deterministic algorithm that for every input number eventually halts and outputs a number.

A set $x \subset \mathbb{N}$ is recursive if there is a recursive function f such that $x = \{n \in \mathbb{N} \mid f(n) \neq 0\}$.

The **R**ecursive **C**omprehension **A**xiom formalizes: if f is a recursive function, then the set $x = \{n \in \mathbb{N} \mid f(n) \neq 0\}$ exists. (Note: Actually, RCA asserts the existence of sets that are recursive relative to known sets.)

The recursive comprehension axiom is the main set existence axiom in RCA₀, the base axiom system for reverse mathematics.

One is not enough: Vocabulary

An axiom system formulated by Kohlenbach [3]

$iRCA_0^{\omega}$ includes:

- E-HA Intuitionistic arithmetic in all finite types with restricted induction and primitive recursion
- QF-AC^{1,0} A choice scheme that implies the recursive comprehension axiom (RCA)
- We consider *problems* of the form $P : \forall x (p_1(x) \rightarrow \exists y \ p_2(x, y))$
 - $p_1(x)$ means x is an instance of the problem P
 - $p_2(x, y)$ means y is a solution of the instance x of the problem P.

One is not enough: Weihrauch reductions

We consider *problems* of the form $P: \forall x(p_1(x) \to \exists y \, p_2(x,y))$ $p_1(x)$ means x is an instance of the problem P $p_2(x,y)$ means y is a solution of the instance x of the problem P.

In this setting Q $\leqslant_{\textit{W}}$ P means there are computable functionals ψ and φ such that

$$\begin{array}{ccc}
\psi \\
x_Q & \longrightarrow & x_P \\
\downarrow & & \downarrow \\
y_Q & \longleftarrow & y_P \\
\phi
\end{array}$$

Note: ϕ can use information about x_Q to compute y_Q . (This is weak reduction.)

One is not enough: Formalized Weihrauch reductions

Given problems:

$$P: \forall x(p_1(x) \to \exists y \, p_2(x, y)) \text{ and } Q: \forall x(q_1(x) \to \exists y \, q_2(x, y))$$

in the language of $iRCA_0^{\omega}$, we use $Q \leq_W P$ to abbreviate

$$\exists \phi \exists \psi \forall u (q_1(u) \to (p_1(\phi(u)) \land \forall y [p_2(\phi(u), y) \to q_2(u, \psi(u, y))]))$$

Which says that there are functionals ϕ and ψ such that

 $q_1(u)$ If u is an instance of Q

 $p_1(\varphi(u))$ then $\varphi(u)$ is an instance of P

 $p_2(\varphi(u), y)$ such that whenever y is a solution the instance $\varphi(u)$ of the problem P

 $q_2(u, \psi(u, y)) \ \psi(u, y)$ computes a solution to the instance u of the problem Q

In computability theory, φ and ψ are computable functionals

One is not enough: What does one mean?

A theory proves Q with one typical use of P if

From $q_1(u)$ we can deduce the existence of x_u , an instance of P.

From $p_1(x_u) \to \exists y p_2(x_u, y)$ we can deduce the existence of $v_{x_u,y}$ with $q_2(u, v_{x_u,y})$.

Theorem: If P and Q are nice problems then $iRCA_0^{\omega}$ proves Q with one typical use of P if and only if $iRCA_0^{\omega} \vdash Q \leq_W P$.

One is not enough: What does one mean?

A theory proves Q with one typical use of P if

From $q_1(u)$ we can deduce the existence of x_u , an instance of P.

From $p_1(x_u) \to \exists y p_2(x_u, y)$ we can deduce the existence of $v_{x_u,y}$ with $q_2(u, v_{x_u,y})$.

Theorem: If P and Q are nice problems then $iRCA_0^{\omega}$ proves Q with one typical use of P if and only if $iRCA_0^{\omega} \vdash Q \leqslant_W P$.

Nice problems: $q_1(u) \to (p_1(x) \land [p_2(x, y) \to q_2(u, v)])$ is in Γ_1

Proof uses modified reducibility [2], adapted from Kohlenbach.

Rutger Kuyper [4] has proved related results.

One is not enough: The main result

Corollary:

 $iRCA_0^{\omega}$ cannot prove RT(2, 4) with one typical use of RT(2, 2).

Proof in three steps:

1: $RT(2,4) \nleq_W RT(2,2)$ Dorais, Shafer et al [1]

2: $iRCA_0^{\omega} \not\vdash RT(2,4) \leqslant_W RT(2,2)$ $iRCA_0^{\omega}$ lies only by omission

3: Apply the previous theorem.

Sometimes, one is enough

Claim: RCA_0 can prove RT(2, 4) with one use of RT(2, 2).

Sketch: Given $f: [\mathbb{N}]^2 \to 4$, either

- $\exists X$ infinite with $f([X]^2) \subset \{a_0, a_1\} \subset \{0, 1, 2, 3\}$ or
- there is no such *X*.

Sometimes, one is enough

Claim: RCA_0 can prove RT(2, 4) with one use of RT(2, 2).

Sketch: Given $f: [\mathbb{N}]^2 \to 4$, either

- $\exists X$ infinite with $f([X]^2) \subset \{a_0, a_1\} \subset \{0, 1, 2, 3\}$ Fix such an $X = \{x_0, x_1, \dots\}$ and set j = 0
- there is no such X.

Let
$$X = \mathbb{N}$$
 and set $j = 1$

Sometimes, one is enough

Claim: RCA_0 can prove RT(2, 4) with one use of RT(2, 2).

Sketch: Given $f: [\mathbb{N}]^2 \to 4$, either

- $\exists X$ infinite with $f([X]^2) \subset \{a_0, a_1\} \subset \{0, 1, 2, 3\}$ Fix such an $X = \{x_0, x_1, \dots\}$ and set j = 0
- there is no such X.

Let
$$X = \mathbb{N}$$
 and set $j = 1$

Define $g: [\mathbb{N}]^2 \to 2$ by:

$$g(m,n) = \begin{cases} 0 & \text{if } j = 0 \land f(x_m, x_n) = a_0 \\ 1 & \text{if } j = 0 \land f(x_m, x_n) = a_1 \\ 0 & \text{if } j = 1 \land f(x_m, x_n) \in \{0, 1\} \\ 1 & \text{if } j = 1 \land f(x_m, x_n) \in \{2, 3\} \end{cases}$$

If Y is mono. for g, then j = 0 and $\{x_m \mid m \in Y\}$ is mono. for f.

Some references

- [1] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer, On uniform relationships between combinatorial problems, Trans. AMS 368 (2014), 1321–1359. DOI 10.1090/tran/6465.
- [2] Jeffry L. Hirst and Carl Mummert, Reverse mathematics and uniformity in proofs without excluded middle, Notre Dame J. Form. Log. 52 (2011), no. 2, 149–162. DOI 10.1215/00294527-1306163.
- [3] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse Mathematics 2001 (Stephen G. Simpson, ed.), Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281–295.
- [4] Rutger Kuyper, *On Weihrauch reducibility and intuitionistic reverse mathematics*. Preprint, arXiv:1511.05189v1.