Two combinatorial proofs and some related questions

Jeff Hirst¹ Appalachian State University Boone, NC

These slides are available at: $www.mathsci.append, apostate.edu/~ilh)$

September 17, 2011

Reverse Mathematics Workshop University of Chicago

¹ Jeff Hirst's research is partially supported by the John Templeton Foundation. Any opinions expressed here

are those of the author and do not necessarily reflect the views of the John Templeton Foundation.

KORK ERKER ADAM ADA

Proof 1: Hindman's theorem implies ACA_0

Hindman's theorem (HT) [\[6\]](#page-17-0) If $f : \mathbb{N} \to k$ then there is a color *j* and an infinite set $X \subset \mathbb{N}$ such that whenever $F \subset X$ is a finite set, $f(\sum F) = j$.

The following form of Hindman's theorem is provable equivalent over RCA_0 [\[1\]](#page-17-1):

(FUT) If $f : \mathbb{N}^{\leq \mathbb{N}} \to k$ then there is a color *j* and an infinite increasing sequence of finite sets, $X_0 < X_1 < X_2 < \ldots$ such that whenever $F \subset \mathbb{N}$ is a finite set, $f(\cup_{i \in F} X_i) = j$.

 $X_0 < X_1 < X_2 < \ldots$ means $\max(X_0) < \min(X_1) < \max(X_1) < \min(X_2) < \dots$

KORKAR KERKER E VOOR

Theorem: Over RCA₀, FUT (and hence HT) implies ACA₀. (Theorem 2.2 of Blass, Hirst, and Simpson [\[1\]](#page-17-1))

Ideas from the proof:

- Use FUT to prove that the range of an injection *g* exists.
- Given g , define the coloring $f : \mathbb{N}^{< \mathbb{N}} \to 2$.
- Apply FUT to *f* and verify that the range of *g* can be calculated from any monochromatic sequence.

Beginning of proof of $FUT \rightarrow ACA_0$

Suppose $q : \mathbb{N} \to \mathbb{N}$ is an injection.

Given a finite set $X \subset \mathbb{N}$, define the *very short gaps* of X.

- Suppose X is $x_0 < x_1 < x_2 < \cdots < x_n$.
- \bullet Say that (x_i, x_{i+1}) is a very short gap of X if

 $x_i \cap g[x_{i+1}] \neq x_i \cap g[x_n]$

Example:

n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 *g*(*n*) | 3 | 4 | 2012 | 2 | 6 | 7 | 0 | 8 | 9 | 1 X is { 2, 5, 6, 8 } The range of *g* on (5, 8] contains an element less than 2, so (2, 5) is a very short gap. The range of *g* on (6, 8] contains no element less than 5, so (5, 6) is not a very short gap.

Suppose $q : \mathbb{N} \to \mathbb{N}$ is an injection.

Given a finite set $X \subset \mathbb{N}$, define the *very short gaps* of X.

- Suppose X is $x_0 < x_1 < x_2 < \cdots < x_n$.
- \bullet Say that (x_i, x_{i+1}) is a very short gap of X if

 $x_i \cap g[x_{i+1}] \neq x_i \cap g[x_n]$

- Let $VSG(X)$ be the cardinality of the set of very short gaps of *X*.
- Define $f(X) = VSG(X) \mod 2$. (*f* is a parity coloring.)

Apply FUT to find S, an increasing sequence of finite sets $X_0 < X_1 < X_2 < \ldots$ such that *f* takes the same value on every finite union.

Short gaps vs. very short gaps

 (x_i, x_{i+1}) is a short gap if the range of *f* on (x_{i+1}, ∞) contains an element less than *xⁱ* .

Example revisited: *n* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 $g(n)$ 3 4 2012 2 6 7 0 8 9 $X \text{ is } \{2, 5, 6, 8\}$ (2, 5) is a very short gap. (5, 6) is not a very short gap. (6, 8) is not a very short gap. Because $g(9) = 1$, $(2, 5)$, $(5, 6)$ and $(6, 8)$ are short gaps. $(6, 10)$ might or might not be a short gap of $\{2, 6, 10\}$.

KOD KARD KED KED BE YOUR

SG vs. VSG

 (x_i, x_{i+1}) is a short gap if the range of *f* on (x_{i+1}, ∞) contains an element less than *xⁱ* .

Example revisited:

n	0	1	2	3	4	5	6	7	8	9
$g(n)$	3	4	2012	2	6	7	0	8	9	1
X is { 2, 5, 6, 8 }										

(2, 5) is a very short gap.

 $(5, 6)$ is not a very short gap. $(6, 8)$ is not a very short gap.

Because $g(9) = 1$, $(2, 5)$, $(5, 6)$ and $(6, 8)$ are short gaps.

 $(6, 10)$ might or might not be a short gap of $\{2, 6, 10\}$.

SG(*X*) is shorthand for the number of short gaps of *X*.

The monochromatic set encodes information about the short gaps

Recall: *f* takes the same value on every finite union of elements of $S = \langle X_0, X_1, \ldots \rangle$. (Parity of VSG.)

Claim: If *F* is a finite union of elements of S, then SG(*F*) is even.

Proof: Fix *F*. Pick *n* so big that no value less than max(*F*) appears in the range of *g* on $(\min(X_n), \infty)$. Consider $F \cup X_n$.

- The short gaps of *F* are also very short gaps of *F* ∪ *Xn*.
- The very short gaps of *Xⁿ* are also very short gaps of *F* ∪ *Xn*.
- (max *F*, min X_n) is not a very short gap $F \cup X_n$.
- Summarizing: $VSG(F \cup X_n) = SG(F) + VSG(X_n)$

Since $VSG(F \cup X_n) = VSG(X_n) \mod 2$, $SG(F)$ is even.

End of the proof that FUT implies ACA_0

Claim: If *F* is a finite union of elements of S and $X \in S$ satisfies $F < X$, then (max *F*, min *X*) is not a short gap.

KORKAR KERKER E VOOR

Proof: Visualize F (max *F*, min*X*) X . $SG(F \cup X_n) = SG(F) + SG({\max F, min X}) + SG(X)$ so $0 = 0 + SG({\text{max }F, \text{min }X}) + 0 \mod 2.$

Claim: The range of *g* is computable from S.

Proof: $\exists t (g(t) = n)$ iff $\exists t < min X_{n+1}$ ($g(t) = n$)

Proof 2: RT_2^2 implies the Free Set Theorem for pairs

Free Set Theorem for pairs (FS(2)): If $f: [\mathbb{N}]^2 \to \mathbb{N}$ then there is an infinite set $X \subset \mathbb{N}$ such that for all $(i,j) \in [X]^2,$ if $f(i,j) \in X$ *then* $f(i, j) = i$ or $f(i, j) = j$.

Theorem: RCA₀ plus Ramsey's theorem for pairs and two colors (RT $_2^2$) proves FS(2). (Appears in Cholak, Guisto, Hirst, and Jockusch [\[2\]](#page-17-2).)

Proof: Suppose $f: [\mathbb{N}]^2 \to \mathbb{N}$ and assume RT²₂. We can use RT_5^2 , if we like.

KORKAR KERKER E VOOR

Define
$$
g: [\mathbb{N}]^2 \to 5
$$
 by the formula $g(i,j) = \begin{cases} 0 & \text{if } f(i,j) < i \\ 1 & \text{if } f(i,j) = i \\ 2 & \text{if } f(i,j) \in (i,j) \\ 3 & \text{if } f(i,j) = j \\ 4 & \text{if } j < f(i,j) \end{cases}$

and let *M* be an infinite set that is monochromatic for *g*.

- $g([M]^2) = 1$ implies FS(2) for *M*, since $f(i, j)$ is always *i*.
- $g([M]^2) = 3$ implies FS(2) for *M*, since $f(i, j)$ is always *j*.
- \bullet If $g([M]^2)=4,$ define $N\subset M$ by setting: $n_0 = m_0$, $n_1 = m_1$, and n_{i+1} is the least element of M greater than max{ $f(n_j, n_k) | 0 \leq j < k \leq i$ }. *N* satisfies FS(2).

KORKAR KERKER E VOOR

• A more challenging case:

$$
g([M]^2) = 0.
$$
 (So $f(i,j) < i$ for all $i, j \in M$.)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

For each *i* and *j* define the sequence σ*ij* as follows:

 $\sigma_{ij}(0)$ \qquad \qquad

• A more challenging case:

 $g([M]^2)=0.$ (So $f(i,j)< i$ for all $i,j\in M.$)

For each *i* and *j* define the sequence σ*ij* as follows:

Continue as long as the sequence decreases.

Define

 h : [M]² \rightarrow 2 by letting *h*(*i*, *j*) be the parity of the length of σ_{ij}. Apply RT_2^2 and find an infinite monochromatic set X for h .

If *i*, *j*, and *f*(*i*, *j*) are all in *X*, then $\sigma_{ij} = f(i, j) \cap \sigma_{f(i, j), j}$, contradicting that their lengths have the same parity. Thus, if *i*, *j* ∈ *X*, then $f(i, j) \notin X$, so *X* satisfies FS(2).

End of the second proof

 \bullet The last case: $g([M]^2 = 2.$ (So $i < f(i,j) < j$ for all $i,j \in M.$) As in the previous case, for each *i* and *j* define a sequence:

KORK ERKER ADAM ADA

End of the second proof

 \bullet The last case: $g([M]^2 = 2.$ (So $i < f(i,j) < j$ for all $i,j \in M.$) As in the previous case, for each *i* and *j* define a sequence:

Repeat as long as the sequence increases. (It's bounded above by *j*.)

Let $h(i, j)$ be the parity of the length of τ_{ii} , and argue as before.

Related questions – FUT

Suppose $f : \mathbb{N}^{\leq \mathbb{N}} \to r$. Say that

f is stable-t if for every *t* there is a *b* such that *f* is constant on all sets containing *t* and meeting (b, ∞) .

f is stable-c if for every *t* there is a *b* such that *f* is constant on all sets containing *t* and of size at least *b*.

KORKAR KERKER E VOOR

Conj: $RCA₀$ proves that FUT for stable-t colorings is equivalent to polarized Ramsey's Theorem for pairs.

Conj: ACA_0 proves FUT for stable-c colorings. Does stable-c FUT imply $ACA₀$? Is there a related version of COH?

Related Questions – FUT plus thin/free set

Thin set for unions (TSU): Suppose $f:\mathbb{N}^{\leq \mathbb{N}} \to \mathbb{N}.$ Then there is a infinite increasing sequence of finite sets, $X_0 < X_1 < X_2 < \ldots$ such that $\{f(\cup_{i\in F} X_i) \mid F \in \mathbb{N}^{<\mathbb{N}}\}\neq \mathbb{N}.$

There is also a free set theorem for unions FSU (see [\[2\]](#page-17-2)).

Exer: RCA₀ proves HT \rightarrow TSU.

Does TSU imply anything?

Prop: Milliken's theorem for triples implies FSU. [\[2\]](#page-17-2)

Does HT imply FSU?

Does Milliken's theorem for triples imply the thin set theorem for all *k*?

Does the polarized thin set theorem imply anything? How about the polarized free set theorem?

Bibliography

- [1] Andreas R. Blass, Jeffry L. Hirst, and Stephen G. Simpson, *Logical analysis of some theorems of combinatorics and topological dynamics*, Logic and combinatorics (Arcata, Calif., 1985), Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 125–156. [MR891245 \(88d:03113\)](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=891245)
- [2] Peter A. Cholak, Mariagnese Giusto, Jeffry L. Hirst, and Carl G. Jockusch Jr., *Free sets and reverse mathematics*, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 104–119. [MR2185429](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2185429) [\(2006g:03101\)](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2185429)
- [3] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, *On the strength of Ramsey's theorem for pairs*, J. Symbolic Logic **66** (2001), no. 1, 1–55. [DOI 10.2307/2694910](http://dx.doi.org/10.2307/2694910) [MR1825173 \(2002c:03094\).](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1825173)
- [4] Damir D. Dzhafarov and Jeffry L. Hirst, *The polarized Ramsey's theorem*, Arch. Math. Logic **48** (2009), no. 2, 141–157. [DOI http://dx.doi.org/10.1007/s00153-008-0108-0](http://dx.doi.org/10.1007/s00153-008-0108-0) [MR2487221 \(2009m:03013\).](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2487221)
- [5] Harvey Friedman and Stephen G. Simpson, *Issues and problems in reverse mathematics*, Computability theory and its applications (Boulder, CO, 1999), Contemp. Math., vol. 257, Amer. Math. Soc., Providence, RI, 2000, pp. 127–144. [MR1770738 \(2002b:03124\)](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1770738)
- [6] Neil Hindman, *Finite sums from sequences within cells of a partition of N*, J. Combinatorial Theory Ser. A **17** (1974), 1–11. [DOI 10.1016/0097-3165\(74\)90023-5](http://dx.doi.org/10.1016/0097-3165(74)90023-5) [MR0349574 \(50 #2067\).](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0349574)
- [7] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. [DOI 10.1017/CBO9780511581007](http://dx.doi.org/10.1017/CBO9780511581007) [MR2517689.](http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2517689)**KOD KOD KED KED E VAN**