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Motto: Dichotomy is not constructive.
A result familiar to constructivists:

Theorem: (Ê-HAω
� + QF-AC0,0) The following are equivalent:

1. LLPO (Lesser limited principle of omniscience) If
f : N→ {0,1} is a function that takes the value 1 at most
once, then either f is 0 on evens, or f is 0 on odds.

2. If α is a real number, then α > 0 or α 6 0.
Consequently, neither of these statements are provable in
E-HAω + AC.
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• Ê-HAω
� + QF-AC0,0 is a weak fragment of analysis based

on intuitionistic predicate calculus.
• A real number is coded by a rapidly converging Cauchy

sequence of rationals.
• If α > 0, there is a witness. α 6 0 means ¬(α > 0).



Motto: Dichotomy is computable, but. . .

Theorem: (RCA0) If α is a real number, then α > 0 or α 6 0.

RCA0 is a weak fragment of classical analysis that includes
ordered semi-ring axioms plus induction for Σ0

1 formulas plus
computable comprehension.

. . . but not uniformly computable.

Theorem: (RCA0) The following are equivalent:
1. WKL0 (Infinite 0–1 trees have infinite paths.)
2. If 〈αi〉i∈N is a sequence of reals, then there is a set I ⊂ N

such that for all i , i ∈ I implies αi > 0 and i /∈ I implies
αi 6 0.



Ideas from the reversal

It suffices to use the statement about sequences of reals to find
a separating set for the ranges of injections with disjoint ranges.

Suppose the injections look like this:

n 0 1 2 3 4 . . .

f (n) 4 9 5 8 1 . . .

g(n) 3 2 7 6 10 . . .

Then build these reals:

α0 = 〈0,0,0,0,0, . . . 〉
α1 = 〈0,0,0,0,2−4,2−4,2−4,2−4, . . . 〉
α2 = 〈0,−2−1,−2−1,−2−1,−2−1, . . . 〉

If I contains indices of non-negative reals and includes all
positive reals, then I contains {n | αn > 0} and avoids
{n | αn < 0}, and so range(f ) ⊂ I and range(g) ⊂ Ic .
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Since RCA0 proves that sequential dichotomy implies WKL0,
RCA0 (or even RCA) cannot prove sequential dichotomy.

By a result of Hirst and Mummert [3], since RCA cannot prove
sequential dichotomy, E-HAω + AC + IPω

ef does not prove
dichotomy.

(AC is a choice scheme and IPω
ef is an independence of

premise scheme for ∃-free formulas.)

The result from [3] is not a biconditional, but a computable
restriction of sequential dichotomy can indicate a candidate for
a constructive restriction of dichotomy.



Definition: A real α is persistent if
• ∀s(α(s) > 0→ ∃t(t > s ∧ α(t) > 0))

. . . the expansion of α has no last non-negative rational
and
• ∀s(α(s) 6 0→ ∃t(t > s ∧ α(t) 6 0))

. . . the expansion of α has no last non-positive rational.

Theorem: (RCA0) If 〈αi〉i∈N is a sequence of persistent reals,
then there is a set I ⊂ N such that for all i , i ∈ I implies αi 6 0
and i /∈ I implies αi > 0.

Theorem: (Ê-HAω
� ) If α is a persistent real, then α > 0 or

α 6 0.

Moral: Reverse math can assist in formulating constructive
results.
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Indices of minima

Theorem: [2] (RCA0) The following are equivalent:
1. WKL0.
2. For every sequence of reals 〈αi〉i∈N, there is a function

m : N→ N such that for each n, αm(n) = min{α0, . . . ,αn}.

Definition: Reals α and β are pairwise persistent if α− β is
persistent.

Theorem: (RCA0) If 〈αi〉i∈N is a sequence of pairwise
persistent reals, then there is a function m such that for each n,
αm(n) = min{α0, . . . ,αn}.

Theorem: (Ê-HAω
� + QF-AC0,0) Fix k . Every finite sequence of

pairwise persistent reals has a minimum.



Enough dichotomy! What about trichotomy?

Theorem: (RCA0) The following are equivalent:
1. ACA0.
2. If 〈αi〉i∈N is a sequence of reals, then there is a set I ⊂ N

such that i ∈ I if and only if αi = 0.

Definition: A real α is contractive if whenever i < j , α(j) is in
the interval [α(i),α(i + 1)].

Theorem: (RCA0) If 〈αi〉i∈N is a sequence of contractive
persistent reals, then there is a set I ⊂ N such that i ∈ I if and
only if αi = 0.

Theorem: (Ê-HAω
� + QF-AC0,0) If α is a contractive persistent

real, then α < 0 or α = 0 or α > 0.



Variations on persistence

Definition: A real α is k -persistent if its tail, starting at k , is a
persistent real.

Definition: h is a modulus of persistence for 〈αi〉i∈N if for every
i , αi is h(i)-persistent.

Theorem: (RCA0) ACA0 is equivalent to “every sequence of
reals has a modulus of persistence.”

Theorem: (RCA0) The following are equivalent:
1. WKL0.
2. Every sequence of reals is component-wise equal to some

sequence of 0-persistent reals.
3. Every sequence of reals is component-wise equal to a

sequence that has a modulus of persistence.
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