Counting, Graphs, and Bells

Jeffry L. Hirst

Appalachian State University Boone, NC 28608

These slides are available at www.mathsci.appstate.edu/~jlh

Change ringing is the art of sequentially playing all possible permutations of a set of bells.

Example: An extent on 2 bells:

An *extent* is a composition that

- begins with rounds (bells played in decreasing pitch),
- contains one row for each possible permutation, and
- finishes with rounds.

Not all changes are legal

Each change must be product of disjoint transpositions of adjacent bells.

For three bells:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \text{ are legal}$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \text{ are not legal}$$

For four bells:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad \text{is legal}$$

There are exactly two extents on three bells.

123	
213	132
231	312
321	321
312	231
132	213

123

$$\circ a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad \circ b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

The unpleasant detail: Generally, rows do not equal the lower line of their permutation.

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} |$$

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} |$$

$$b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} |$$

$$231$$

$$ba(1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (1) = 3$$
$$ba(2) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (2) = 1$$
$$ba(3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (3) = 2$$
so, $ba = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

However, after ba, 1 goes in the 3^{rd} slot, etc.

The strange resolution:

$$ba = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$(ba)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

In general, the row resulting from the change $a_n a_{n-1} \dots a_2 a_1$ is the second line of the permutation $(a_n a_{n-1} \dots a_2 a_1)^{-1}$.

Also, every legal change is its own inverse, so

$$a_1 a_2 \dots a_{n-1} a_n a_n a_{n-1} \dots a_2 a_1 = e.$$

That is, $(a_n a_{n-1} \dots a_2 a_1)^{-1} = a_1 a_2 \dots a_{n-1} a_n.$

$$ab = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Cayley Diagrams

The set of permutations of three things forms a group. It's S_3 , the symmetric group for n =3. S_3 has 3! elements, and is generated by the permutations a and b.

 $S_3 = \{e, a, ba, aba, (ba)^2, a(ba)^2\}$

- The extents on three bells are the Hamilton paths through the Cayley diagram, starting at *e*.
- The extents can also be represented by identity words, namely *ababab* and *bababa*.
- These identity words are unusual in that they are of length 6 (the order of S_3) and contain no identity subwords.

Plain Bob Minimus: A traditional extent on 4 bells

The rows:

1234	1342	1423
2143	3124	4132
2413	3214	4312
4231	2341	3421
4321	2431	3241
3412	4213	2314
3142	4123	2134
1324	1432	1243
		1234

The word:

$$(cabababa)^3 = e$$
, where
 $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ $b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$ $c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$

Plain Bob Minimus: A traditional extent on 4 bells

The word:

$$(cabababa)^3 = e$$
, where

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \quad c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$

The Hamilton path through the Cayley diagram:

The Cayley diagram for S_4 (generated by a, b and c)

References

- Arthur T. White, *Fabian Stedman: The First Group Theorist?*, The American Mathematical Monthly, **103**, 1996, pages 771–778.
- Fabian Stedman, *Campanalogia*, W. Godbid, London 1677.
- John B. Fraleigh, A First Course in Abstract Algebra, 6th Edition, 1999.
- Ringing Clear: The Art of Handbell Ringing, Saydisc CD-SDL 333