Milliken's Theorem, Ultrafilters, and Reverse Mathematics

ASL in Chicago June 1, 2003

Jeffry L. Hirst Appalachian State University

These slides are available at www.mathsci.appstate.edu/~jlh Click on "Slides and Posters" Reverse mathematics can measure the prooftheoretic and computability-theoretic strength of theorems.

Subsystems of second order arithmetic:

 RCA_0 : (recursive comprehension)

- $\cdot\,$ ordered semi-ring axioms
- · induction for Σ_1^0 formulas
- existence axioms for relatively computable sets
- \cdot model: ω and the computable sets
- ACA_0 : (arithmetical comprehension)
 - $\cdot \ \mathsf{RCA}_0 \ \mathrm{plus} \ \mathrm{existence} \ \mathrm{axioms} \ \mathrm{for} \ \mathrm{sets} \\ \mathrm{defined} \ \mathrm{by} \ \mathrm{formulas} \ \mathrm{containing} \ \mathrm{num-} \\ \mathrm{ber} \ \mathrm{quantifiers} \ \mathrm{(no} \ \mathrm{set} \ \mathrm{quantifiers}) \\ \end{array}$
 - \cdot model: ω and the arithmetically definable sets

FS(X) := all sums of finite subsets of X **Example:** Suppose $X = \{1, 2, 5\}$. Then $FS(X) = \{1, 2, 3, 5, 6, 7, 8\}$ No repeating!

Theorem 1 (Hindman's Theorem [3]). Given $G \subseteq \mathbb{N}$, there is an infinite set $X \subseteq \mathbb{N}$ such that $FS(X) \subseteq G$ or $FS(X) \subseteq G^c$. **Example:** Suppose G is the set of natural numbers that have an even number of factors of 2 in their prime factorization.

0	1	2	3	4	5	6	7	8	16
G	G		G	G	G		G		G

Candidates for X:

- 1. G doesn't work, because 3 + 5 = 8.
- 2. G^c doesn't work, because 2+6+8=16.
- 3. $X = \{2^1, 2^3, 2^5, 2^7, \dots\}$ works! Every nonrepeating finite sum is in G^c .

Sometimes it's hard to find X.

Hindman's Theorem and Reverse Math

Theorem 2. (Blass, Hirst, Simpson [1]) (RCA₀) *Hindman's theorem proves* ACA₀.

 ACA_0^+ consists of ACA_0 plus the existence of the ω jump of each set.

Theorem 3. (Blass, Hirst, Simpson [1]) ACA_0^+ proves Hindman's theorem.

Theorem 4. (Blass, Hirst, Simpson [1]) ACA₀⁺ proves this iterated version of Hindman's theorem: Given $\langle G_i \rangle_{i \in \mathbb{N}}$ there is an increasing sequence $\langle x_i \rangle_{i \in \mathbb{N}}$ such that for each value of j, either FS($\{x_i \mid i > j\}$) $\subseteq G_j$ or FS($\{x_i \mid i > j\}$) $\subseteq G_j^c$.

Downward Translations

For $X \subseteq \mathbb{N}$ and $m \in \mathbb{N}$, let

$$X - m = \{ y \in \mathbb{N} \mid y + m \in X \}$$

n	0	1	2	3	4	5	6	7	8
$n \in X$	0	1	1	0	0	0	1	1	1
$n \in X - 2$	1	0	0	0	1	1	1	?	?

A countable field of sets (Boolean algebra of sets) is a collection of subsets of \mathbb{N} which is closed under intersection, (finite) union, and complement.

A downward translation algebra is a field of sets that is closed under downward translations.

 RCA_0 can prove that the downward translation algebra generated by $\langle G_i \rangle_{i \in \mathbb{N}}$ exists.

Ultrafilters

An ultrafilter on a field of sets F is a subset $U \subseteq F$ satisfying:

1. $\emptyset \notin U$

- 2. if $X_1, X_2 \in U$ then $X_1 \cap X_2 \in U$ (closed under intersections)
- 3. $\forall X \in U \ \forall Y \in F \ (X \subseteq Y \to Y \in U)$ (closed under supersets)
- 4. $\forall X \in F \ (X \in U \lor X^c \in U)$

An ultrafilter U is almost downward translation invariant if

$$\forall X \in U \ \exists x \in X \ (x \neq 0 \land X - x \in U)$$

Theorem 5. (Hindman [2]) Assuming CH, Hindman's theorem holds if and only if there is an almost downward translation invariant ultrafilter on the field of subsets of \mathbb{N} .

P-theorem 6. (RCA_0) The following are equivalent:

1. The iterated version of Hindman's Theorem.

2. Every countable downward translation algebra has an almost downward translation invariant ultrafilter. Ideas from the proof of P-theorem 6

• IHT \rightarrow ultrafilters

Enumerate the d.t. algebra, $\langle G_i \rangle$; apply IHT.

For each i, let \widehat{G}_i denote the element of $\{G_i, G_i^c\}$ containing the homogeneous set.

 $U = \{\widehat{G}_i \mid i \in \mathbb{N}\}$ is the desired u.f.

• Ultrafilters
$$\rightarrow$$
 IHT

Generate a d.t. algebra from the partitions: $G = \langle \{G_i \mid i \in \mathbb{N}\} \rangle$

Find an ultrafilter U on G.

Let $X_0 = \widehat{G}_0$ and $x_0 = 0$.

Let x_{n+1} be the least element of X_n with $x_{n+1} > x_n$ and $X_n - x_{n+1} \in U$ and let $X_{n+1} = X_n \cap (X_n - x_{n+1}) \cap \widehat{G}_{n+1}$

 $X = \{x_j \mid j > 0\}$ is the desired homogeneous set.

Why is Milliken's Theorem in the title of this talk?

Notation:

 $\begin{aligned} A < B \text{ means max } A < \min B \\ \sum A \text{ abbreviates } \sum_{x \in A} x \\ \mathsf{FS3}(X) \text{ is the triples of increasing sums:} \\ (\sum A, \sum B, \sum C) \text{ where} \\ A < B < C \text{ and } A \cup B \cup C \subseteq X \end{aligned}$

FSn(x) is defined analogously

P-theorem 7. For each standard natural number $n \ge 3$, RCA₀ can prove that the following are equivalent:

(1) Milliken's theorem for n-tuples: If $f: [\mathbb{N}]^n \to k$ then there is an increasing sequence $X = \langle x_i \rangle_{i \in \mathbb{N}}$ such that f is constant on FSn(X).

(2) Iterated Hindman's Theorem.

Does ACA_0 prove Milliken's Theorem?

Does ACA_0 prove the iterated Hindman's Theorem?

Does ACA_0 prove Hindman's Theorem?

Can techniques from topological semigroups be applied to the space of ultrafilters on countable downward translation algebras to carry out proofs of combinatorial statements in ACA_0 ?

References

- A. Blass, J. Hirst, and S. Simpson. Logical Analysis of Some Theorems of Combinatorics and Topological Dynamics. In: *Logic and Combinatorics* (Editor: S. Simpson), Contemporary Mathematics, 65:125–156, 1987.
- [2] N. Hindman. The existence of certain ultrafilters on N and a conjecture of Graham and Rothschild. Proc. Amer. Math. Soc., 36:341– 346, 1972.
- [3] N. Hindman. Finite sums from sequences within cells of a partition of N. J. Combin. Theory Ser. A, 17:1-11, 1974.
- [4] Keith R. Milliken. Ramsey's theorem with sums or unions. J. Combinatorial Theory Ser. A, 18:276–290, 1975.
- [5] S.G. Simpson. Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.
 - For these slides and proofs of the P-theorems, go to www.mathsci.appstate.edu/~jlh and click on "Slides and Posters."