Variants of Ramsey's Theorem

Jeff Hirst Appalachian State University March 14, 2008

These slides are available at: www.mathsci.appstate.edu/~jlh

Pigeonhole principles

RT¹: If $f : \mathbb{N} \to k$ then there is a $c \leq k$ and an infinite set H such that $\forall n \in H$ $f(n) = c$.

TT¹: For any finite coloring of 2^{*N*} , there is a monochromatic subtree order-isomorphic to $2^{\text{&N}}$.

A proof of $TT¹$

Lef FIN denote the set of finite subsets of N.

Hindman's exceptionally large hammer:

Finite Union Theorem (FUT): If $f : FIN \rightarrow k$ then there is a $c \leq k$ and an infinite increasing sequence $\langle H_i \rangle_{i \in \mathbb{N}}$ of elements of FIN such that for every $F \in FIN$

 $f(\cup_{i\in F}H_i)=c.$

Claim: $TT¹$ is an easy consequence of FUT.

Logical analysis of the FUT proof of $TT¹$

Using results of Blass, Hirst, and Simpson (BHS). . .

Computability theoretic:

Theorem (BHS) If f and $\langle H_i \rangle_{i \in \mathbb{N}}$ are as in FUT, and f is computable, then we can find $\langle H_i \rangle_{i \in \mathbb{N}} \leq 0^{(\omega)}$.

Consequence: if f is a computable coloring of 2^N , then there is a monochromatic subtree computable from $0^{(\omega)}$.

Reverse mathematics:

Theorem (BHS) ACA_0^+ 0 \vdash FUT

Consequence: ACA_0^+ 0 \vdash TT¹

Question: Does $ACA₀$ prove FUT ?

Another proof of $TT¹$

As proved in Chubb, Hirst, and McNichol (CHM)

Step 1: The proof for two colors.

Step 2: There is a least j such that there is a node τ such that at most j colors appear at or above τ .

Logical analysis

Computability theoretic: If the coloring is computable, then there is a computable monochromatic subtree. Reverse mathematics: $\mathsf{RCA}_0 + \Sigma^0_2 - \mathsf{IND} \vdash \mathsf{TT}^1$

Jockusch: "We do not see how to obtain the latter result starting from [the] original proof."

Some results on Ramsey's theorem

 RT_k^n \boldsymbol{k} : If $f : [\mathbb{N}]^n \to k$ then there is a c and an infinite $H \subset \mathbb{N}$ such that $f([N]^n) = c$.

Sample computability theoretic results

- If f is computable, then there is an H which is:
	- \bullet Π^0_n definable (Jockusch)
	- with $H'' \leq_T 0^{(n)}$ (Cholak, Jockusch, Slaman)

There is a computable $f: [\mathbb{N}]^n \to k$ such that

- no H is computable (Specker)
- no H is Σ^0_n definable (Jockusch)
- 0^{n-2} is computable from every H (Jockusch)

Some more results on Ramsey's theorem

- RT_k^n \boldsymbol{k} : If $f : [\mathbb{N}]^n \to k$ then there is a c and an infinite $H \subset \mathbb{N}$ such that $f([N]^n) = c$. RT^n : $\forall k \mathsf{RT}^n_k$ \mathcal{k}
	- $RT: \forall nRT^n$

Sample reverse mathematics

- For $n \geq 3$ and $k \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{RT}^n_k \leftrightarrow \mathsf{ACA}_0$ (Simpson)
- \bullet RCA $_0\vdash$ RT $^1\leftrightarrow$ BN 0_1
- $RCA_0 \vdash RT \leftrightarrow ACA_0'$ (Mileti)

TT_k^n k parallels RT^n_k \mathcal{k}

 TT_k^n k : For any k coloring of the *n*-tuples of comparable nodes in $2^{\text{&N}}$, there is a color and a subtree order-isomorphic to $2^{\langle\mathbb{N}\rangle}$ in which all *n*-tuples of comparable nodes have the specified color.

Note: RT^n_k k is an easy consequence of TT_k^n k

Results in Chubb, Hirst, and McNichol:

- There is a computable coloring with no Σ^0_n monochromatic subtree. (Free.)
- Every computable coloring has a Π^0_n monochromatic subtree. (Not free.)
- For $n \geq 3$ and $k \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{TT}_{\mathsf{k}}^{\mathsf{n}} \leftrightarrow \mathsf{ACA}_0$.

Questions about TT

```
Mileti showed that RCA_0 \vdash RT \leftrightarrow ACA'_0.
```

```
Does RCA_0 \vdash TT \leftrightarrow ACA_0'?
```
Cholak, Jockusch, and Slaman showed $RCA_0 + RT_2^2 \not\vdash RT^2$. Does $RCA_0 + TT_2^2 \vdash TT^2$? Does $RCA_0 + TT_2^2 \vdash RT^2$? Does $RCA_0 + TT_2^2 \vdash \Sigma_2^0 - IND$?

Polarized partitions

Preliminary results with Damir Dzhafarov:

 $[$ IPT n_k k </sub> : If $f: \mathbb{N}^n \to k$ then there is a c and a sequence of infinite sets $H_1 \dots H_n$ such that for any $x_1 < \dots < x_n$ (with $x_i \in H_i$ for all *i*) we have $f(x_1 \ldots x_n) = c$.

Note: IPT_k^n k is an easy consequence of RT^n_k \mathcal{k} .

Theorem: If f is computable, then there is a Π^0_n -definable $H_1 \dots H_n$. (Free)

Theorem: There is a computable f with no Σ^0_n definable $H_1 \dots H_n$. (Not free, but not terrible.)

Theorem: If $n \geq 3$ and $k \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{IPT}^n_k \leftrightarrow \mathsf{ACA}_0$. Theorem: $RCA_0 \vdash \text{IPT} \leftrightarrow ACA'_0$,

 $f: [\mathbb{N}]^2 \to k$ is stable if $\lim_{m} f(n,m)$ exists for every n. $SRT²$ is $RT²$ for stable partitions. $SIPT²$ is $IPT²$ for stable partitions.

Theorem: $RCA_0 \vdash$ SIPT² \rightarrow RT¹

Theorem: $RCA_0 \vdash$ SIPT² \leftrightarrow SRT²

Consequence: $RCA_0 \vdash RT^2 \rightarrow IPT^2 \rightarrow SRT^2$

Question: Which of the converses hold?

References

- [1] Andreas R. Blass, Jeffry L. Hirst, and Stephen G. Simpson, Logical analysis of some theorems of combinatorics and topological dynamics (1987), 125–156, In: Logic and combinatorics, Contemp. Math., **65**, Amer. Math. Soc. Providence.
- [2] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey's theorem for pairs, J. Symbolic Logic 66 (2001), 1–55.
- [3] Jennifer Chubb, Jeff Hirst, and Tim McNichol, Reverse mathematics and partitions of trees (draft), www.mathsci.appstate.edu/ $\tilde{\text{1}}$ lh/pdf/rt.pdf.
- [4] Neil Hindman, Finite sums from sequences within cells of a partition of N , J. Combinatorial Theory Ser. A 17 (1974), 1–11.
- [5] Carl G. Jockusch Jr., Ramsey's theorem and recursion theory, J. Symbolic Logic 37 (1972), 268–280.
- $[6]$ J. Mileti, *Partition theory and computability theory*, Ph.D. Thesis.
- [7] E. Specker, Ramsey's theorem does not hold in recursive set theory (1971), 439–442, In : Proc. Summer School and Colloq., Manchester, 1969, North Holland, Amsterdam.